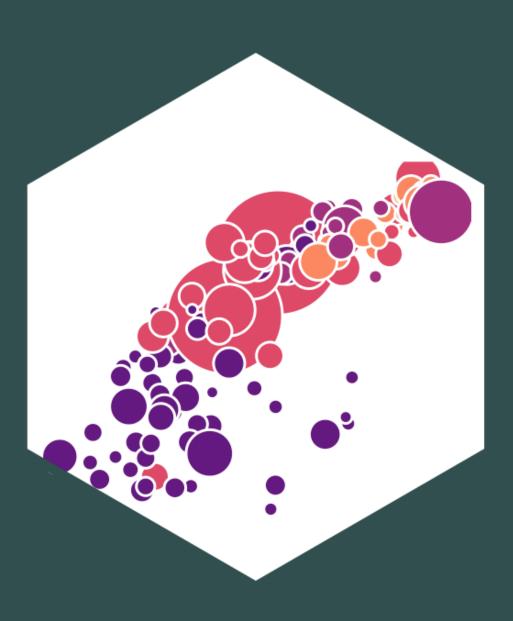
5.2 — Difference-in-Differences ECON 480 • Econometrics • Fall 2022 Dr. Ryan Safner Associate Professor of Economics

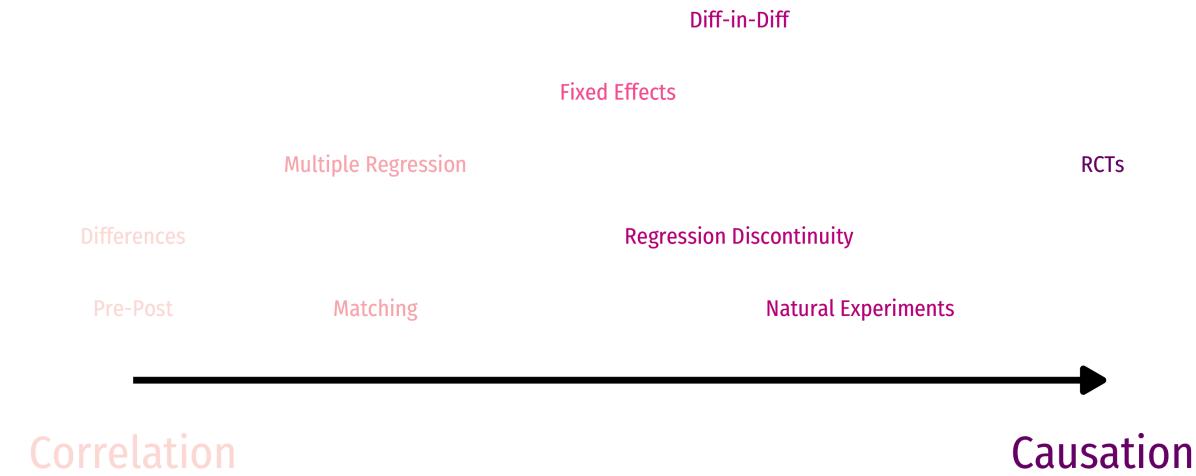
safner@hood.edu
 ryansafner/metricsF22
 metricsF22.classes.ryansafner.com



Contents **Difference-in-Differences Models Example I: HOPE in Georgia Generalizing DND Models** Example II: "The" Card-Kreuger Minimum Wage Study

Clever Research Designs Identify Causality

Again, this toolkit of research designs to identify causal effects is the economist's comparative **advantage** that firms and governments want!



ECON 480 — Econometrics

Natural Experiments

• Often, we want to examine the consequences of a change, such as a law or policy intervention

7

 Often, we want to examine the consequences of a change, such as a law or policy intervention

Example

- How do States that implement policy \boldsymbol{X} see changes in \boldsymbol{Y}
 - **Treatment**: States that implement X
 - Control: States that did not implement \boldsymbol{X}
- If we have **panel data** with observations for all states **before** and **after** the change...
- Find the *difference* between treatment & control groups *in* their *differences* before and after the treatment period

 Often, we want to examine the consequences of a change, such as a law or policy intervention

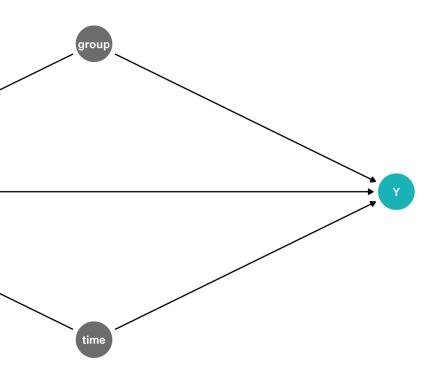
Example

- How do States that implement policy X see changes in ${\cal Y}$
 - **Treatment**: States that implement X
 - Control: States that did not implement \boldsymbol{X}
- If we have **panel data** with observations for all states **before** and **after** the change...
- Find the *difference* between treatment & control groups *in* their *differences* before and after the treatment period

• Often, we want to examine the consequences of a change, such as a law or policy intervention

Example

- How do States that implement policy \boldsymbol{X} see changes in \boldsymbol{Y}
 - **Treatment**: States that implement *X*
 - Control: States that did not implement \boldsymbol{X}
- If we have **panel data** with observations for all states **before** and **after** the change...
- Find the *difference* between treatment & control groups *in* their *differences* before and after the treatment period



• The difference-in-differences (aka "diff-in-diff" or "DND") estimator identifies treatment effect by differencing the difference pre- and post-treatment values of *Y* between treatment and control groups

 $\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$

• Treated_i = $\begin{cases} 1 \text{ if } i \text{ is in treatment group} \\ 0 \text{ if } i \text{ is not in treatment group} \end{cases}$ After_t = $\begin{cases} 1 \text{ if } t \text{ is after treatment period} \\ 0 \text{ if } t \text{ is before treatment period} \end{cases}$

	Control	Treatment	Group Diff (ΔY_i)
Before	β_0	$\beta_0 + \beta_1$	β_1
After	$\beta_0 + \beta_2$	$\beta_0 + \beta_1 + \beta_2 + \beta_3$	$\beta_1 + \beta_3$
Time Diff (ΔY_t)	β_2	$\beta_2 + \beta_3$	β_3 Diff-in-diff $(\Delta_i \Delta_t)$

Example: Hot Dogs

 Is there a discour chili?

price	cheese
<dbl></dbl>	<dbl></dbl>
2.00	0
2.35	1
2.35	0
2.70	1
4 rows 1-2 of 3 columns	
4 rows 1-2 of 3 columns	

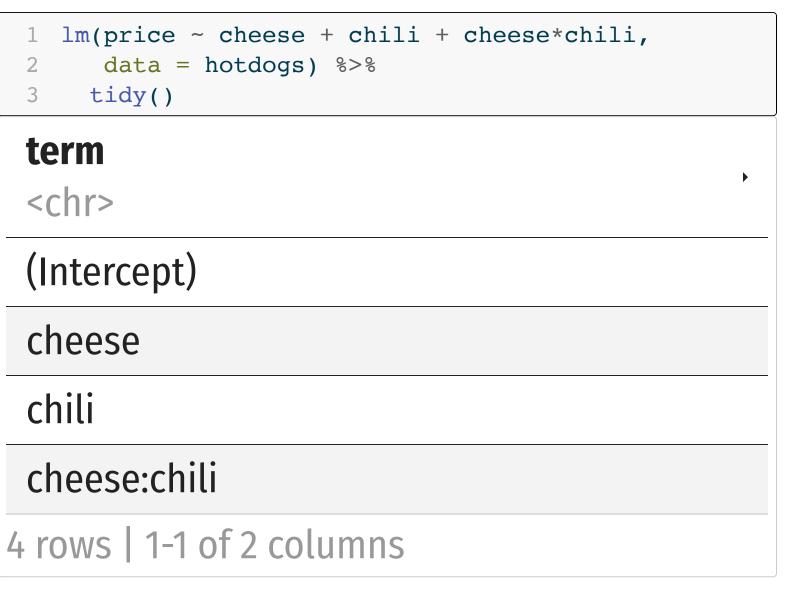
• Is there a discount when you get cheese and

Example: Hot Dogs

	 Is there a discour chili?
PLAIN \$2.00 CHEESE \$2.35	<pre>1 lm(price ~ cheese 2 data = hotdogs 3 tidy()</pre>
	term <chr></chr>
CHILI \$2.35 CHILI CHEESE \$2.70	(Intercept)
	cheese
	chili
	cheese:chili
	k rough 11 of 2 co

• Diff-n-diff is just a model with an interaction term between two dummies!

int when you get cheese and



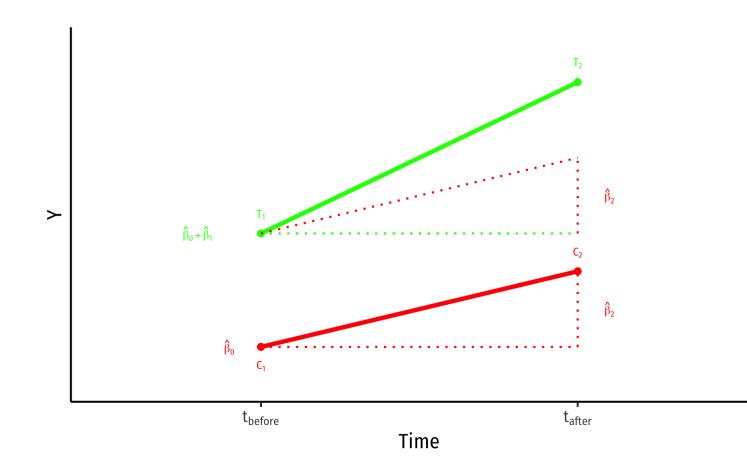
 $\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$



- Control group (Treated_i = 0)
- $\hat{\beta}_0$: value of *Y* for **control** group **before** treatment

• β_2 : time difference (for **control** group)

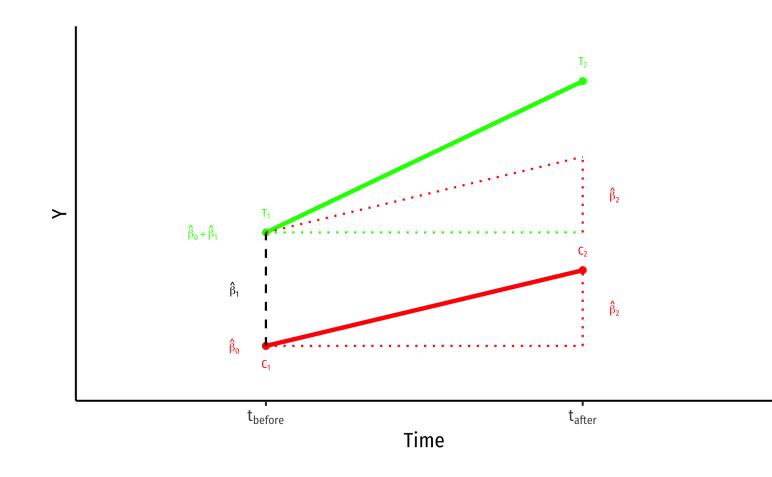
 $\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$



- Control group (Treated_i = 0)
- treatment
- Treatment group (Treated_i = 1)

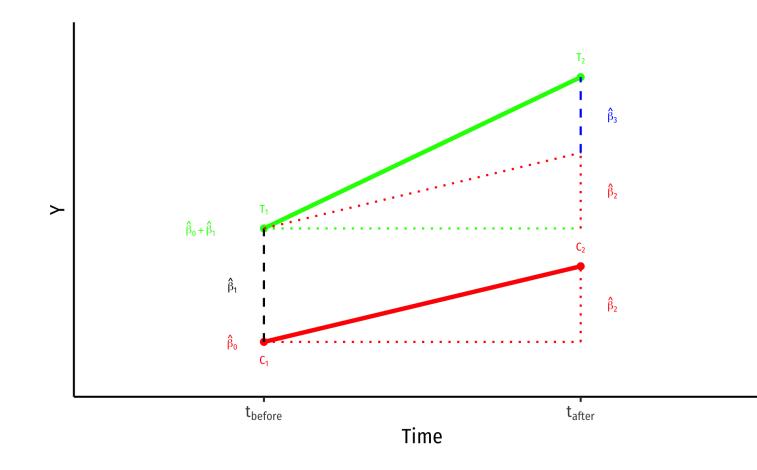
• β_0 : value of Y for **control** group **before**

• β_2 : time difference (for **control** group)



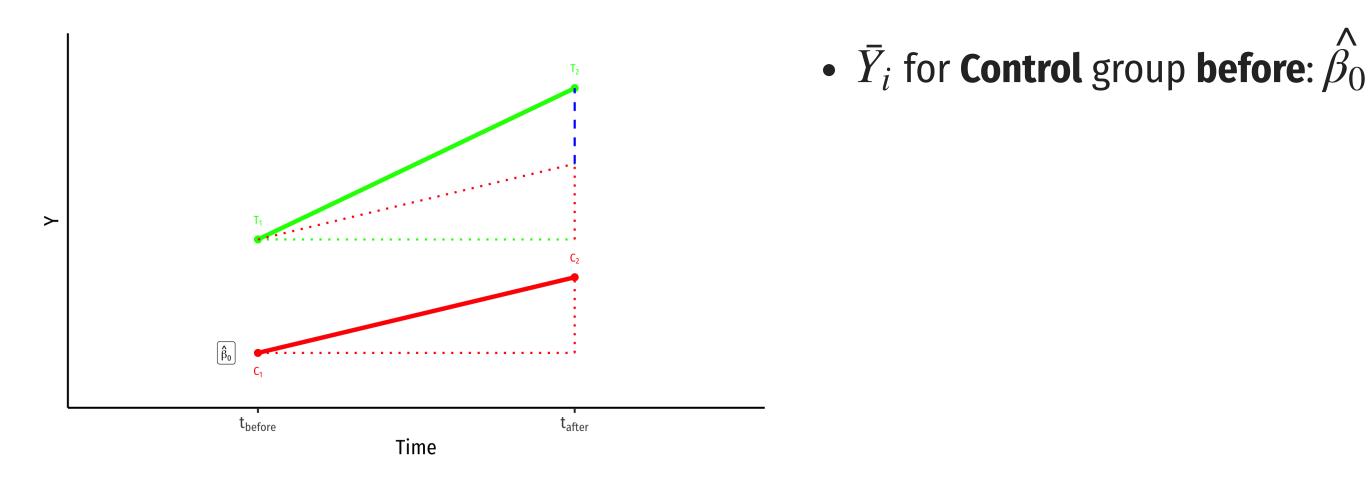
- Control group (Treated_i = 0)
- $\hat{\beta}_0$: value of Y for **control** group **before** treatment
- β_2 : time difference (for **control** group) • Treatment group (Treated_i = 1)
- $\hat{\beta}_1$: difference between groups **before** treatment

 $\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$

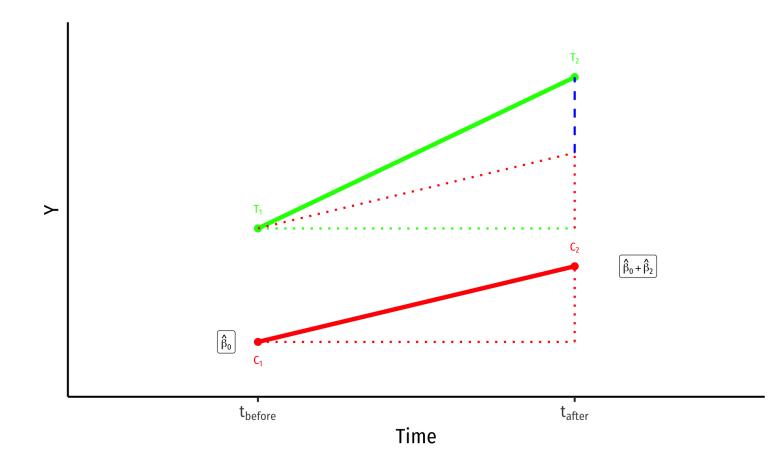


- Control group (Treated_i = 0)
- $\hat{\beta}_0$: value of Y for **control** group **before** treatment
- β_2 : time difference (for **control** group) • Treatment group (Treated_i = 1)
- $\hat{\beta}_1$: difference between groups **before** treatment
- effect)

• $\hat{\beta}_3$: difference-in-differences (treatment

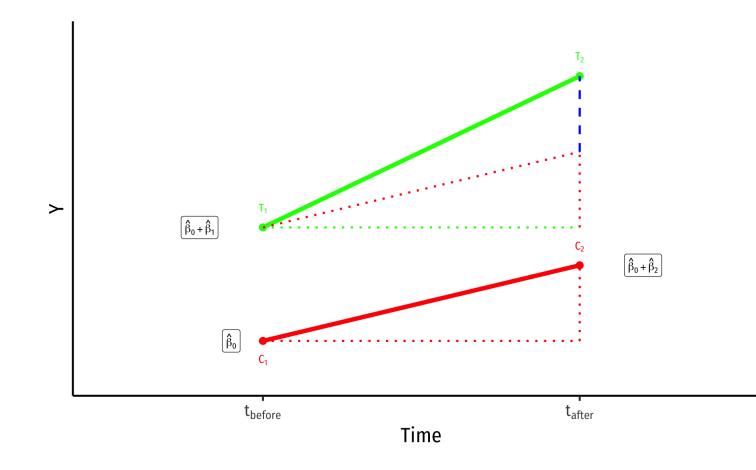


 $\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$



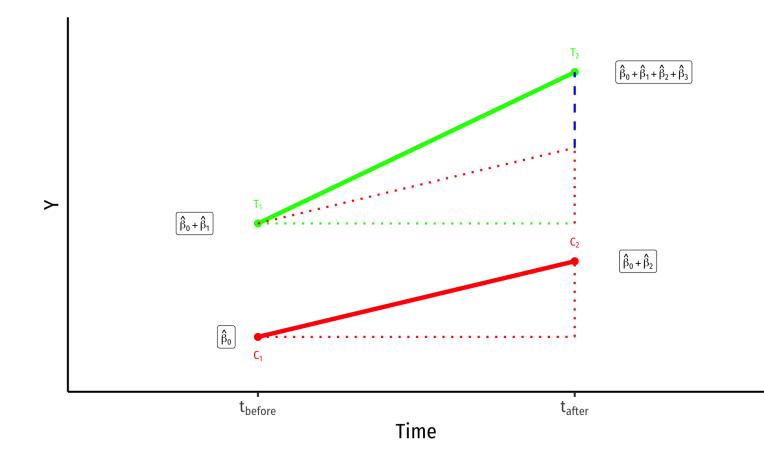
• \bar{Y}_i for **Control** group **before**: $\hat{\beta}_0$ • \bar{Y}_i for **Control** group **after**: $\hat{\beta}_0 + \hat{\beta}_2$

 $\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$

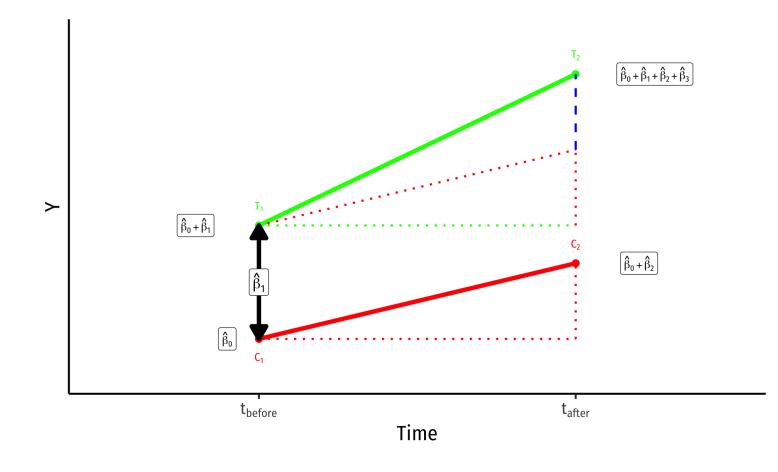


- \bar{Y}_i for **Control** group **before**: $\hat{\beta}_0$

• \bar{Y}_i for **Control** group **after**: $\hat{\beta}_0 + \hat{\beta}_2$ • \bar{Y}_i for **Treatment** group **before**: $\hat{\beta}_0 + \hat{\beta}_1$

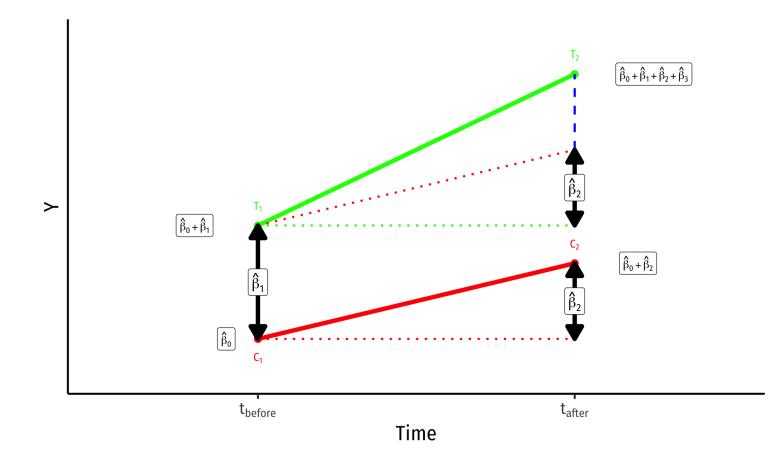


- \bar{Y}_i for **Control** group **before**: $\hat{\beta}_0$ • \bar{Y}_i for **Control** group **after**: $\hat{\beta}_0 + \hat{\beta}_2$ • \bar{Y}_i for **Treatment** group **before**: $\hat{\beta}_0 + \hat{\beta}_1$ • \bar{Y}_i for **Treatment** group **after**: $\hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3$



- \bar{Y}_i for **Control** group **before**: $\hat{\beta}_0$ • \bar{Y}_i for **Control** group **after**: $\hat{\beta}_0 + \hat{\beta}_2$ • \bar{Y}_i for **Treatment** group **before**: $\hat{\beta}_0 + \hat{\beta}_1$ • \overline{Y}_i for **Treatment** group **after**: $\hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3$

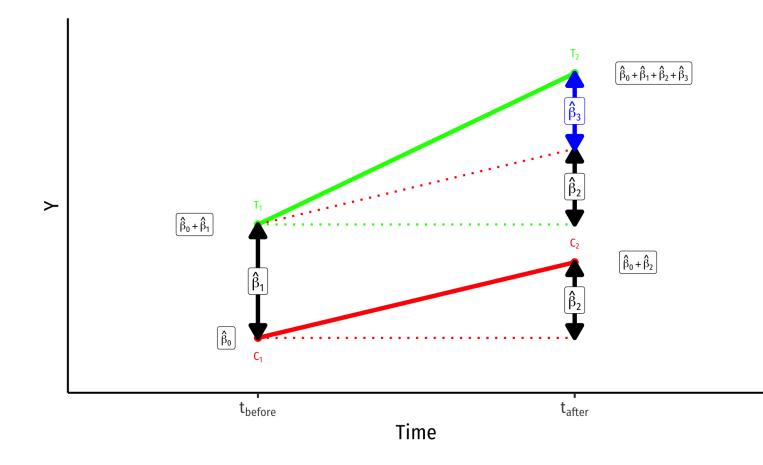
- Group Difference (before): $\hat{\beta}_1$



- \bar{Y}_i for **Control** group **before**: $\hat{\beta}_0$ • \bar{Y}_i for **Control** group **after**: $\hat{\beta}_0 + \hat{\beta}_2$ • \bar{Y}_i for **Treatment** group **before**: $\hat{\beta}_0 + \hat{\beta}_1$ • \overline{Y}_i for **Treatment** group **after**: $\hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3$

- Group Difference (before): $\hat{\beta}_1$
- Time Difference: $\hat{\beta}_2$

 $\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$



- \bar{Y}_i for **Control** group **before**: $\hat{\beta}_0$ • \bar{Y}_i for **Control** group **after**: $\hat{\beta}_0 + \hat{\beta}_2$ • \bar{Y}_i for **Treatment** group **before**: $\hat{\beta}_0 + \hat{\beta}_1$ • \bar{Y}_i for **Treatment** group **after**:

- $\hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3$
- Group Difference (before): $\hat{\beta}_1$
- Time Difference: $\hat{\beta}_2$

ECON 480 — Econometrics

• **Difference-in-differences**: $\hat{\beta}_3$ (treatment effect)

Comparing Group Means (Again)

 $\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$

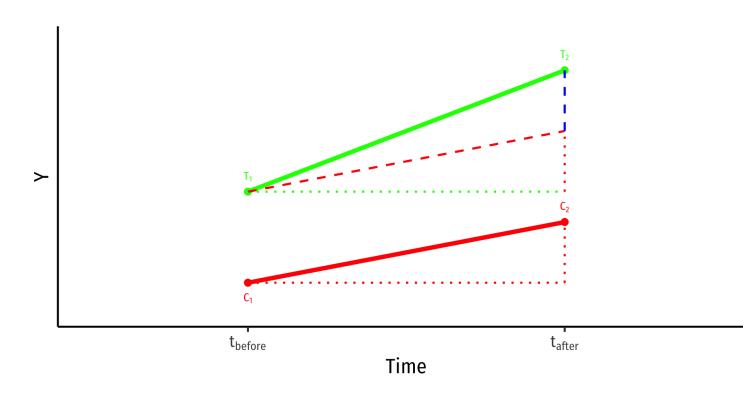
	Control	Treatment	Group Diff (ΔY_i)
Before	β_0	$\beta_0 + \beta_1$	β_1
After	$\beta_0 + \beta_2$	$\beta_0 + \beta_1 + \beta_2 + \beta_3$	$\beta_1 + \beta_3$
Time Diff (ΔY_t)	β_2	$\beta_2 + \beta_3$	Diff-in-diff $\Delta_i \Delta_t$

 $: \beta_3$

25

Key Assumption: Counterfactual

 $\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$



- treatment
- (\hat{B}_2)

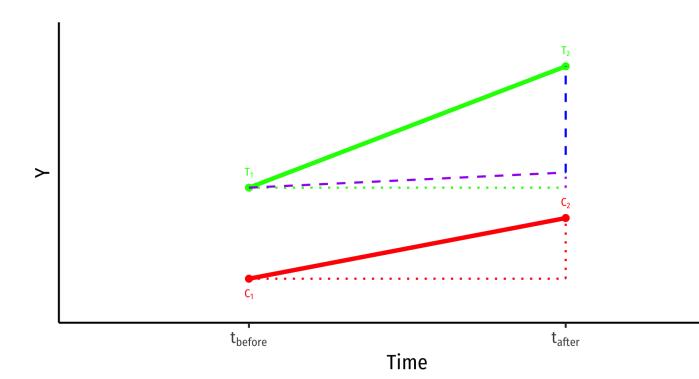
• Key assumption for DND: **time trends** (for treatment and control) are **parallel**

• Treatment and control groups assumed to be identical over time on average, except for

• **Counterfactual**: if the treatment group had not recieved treatment, it would have changed identically over time as the control group

Key Assumption: Counterfactual

 $\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$



 $(\hat{\beta}_3)!$

• If the time-trends would have been *different*, a **biased** measure of the treatment effect

Example I: HOPE in Georgia

ECON 480 — Econometrics

Diff-in-Diff Example I

Example

In 1993 Georgia initiated a HOPE scholarship program to let state residents with at least a B average in high school attend public college in Georgia for free. Did it increase college enrollment?

• Micro-level data on 4,291 young individuals

• InCollege_{*it*} =
$$\begin{cases} 1 \text{ if } i \text{ is in college during year } t \\ 0 \text{ if } i \text{ is not in college during year } t \end{cases}$$

• Georgia_i = $\begin{cases} 1 \text{ if } i \text{ is a Georgia resident} \\ 0 \text{ if } i \text{ is not a Georgia resident} \end{cases}$

• After_t =
$$\begin{cases} 1 \text{ if } t \text{ is after } 1992 \\ 0 \text{ if } t \text{ is after } 1992 \end{cases}$$

Byn Aloties With 1939, duppmyr drependent a Wariable a coefficients restinator the probability a person is enrolled in collogo

Diff-in-Diff Example II

- We can use a DND model to measure the effect of HOPE scholarship on enrollments
- Georgia and nearby States, if not for HOPE, changes should be the same over time
- Treatment period: after 1992
- Treatment: Georgia
- Difference-in-differences:

$$\Delta_i \Delta_t Enrolled = (GA_{after} - GA_{before}) - (neighbors_{after})$$

• Regression equation:

$$\widehat{\text{Enrolled}}_{it} = \beta_0 + \beta_1 \operatorname{Georgia}_i + \beta_2 \operatorname{After}_t + \beta_3 (\mathbf{C})$$

ECON 480 — Econometrics

p on enrollments same over time

- neighbors_{before})

$\text{Georgia}_i \times \text{After}_t$)

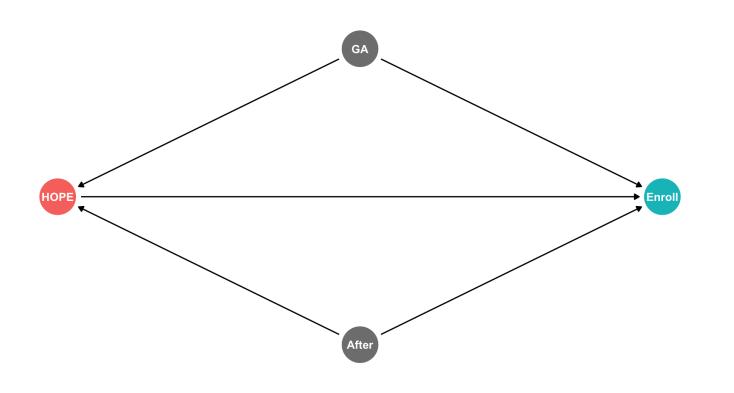
Example: Data

1 hope			
StateCode	Age	Year	Weight
<fct></fct>	<dbl></dbl>	<fct></fct>	<dpl></dpl>
56	19	89	1396
56	19	89	1080
56	18	89	924
56	19	89	891
56	19	89	1395
56	18	89	1106
56	19	89	965
56	18	89	958
56	19	89	1006
56	ECON 480 1-9 con	nometres	1183

ECON 480 — Econometrics

Previous **1** 2 3 4 5 6 43**0** ext

Example: Data



The effect of HOPE is identified by differences between Georgia and the rest of the southeastern United States in the time pattern of college attendance rates. I use difference-in-differences estimation, comparing attendance rates before and after HOPE was introduced, within Georgia and in the rest of the region. This calculation can be made using ordinary least squares:

[7]
$$y_i = \alpha_1 + \beta_1 (Georgia_i * After_i)$$

+ $\delta_1 Georgia_i + \theta_1 After_i + v_{i1}$

where the dependent variable is a binary measure of college attendance, Georgia, is a binary variable that is set to one if a youth is a Georgia resident and After, is a

Example: Regression

- DND reg <- lm(InCollege ~ Georgia + After + Georgia*After, data = hope)
- 2 DND reg %>% tidy()

term

<chr>

(Intercept)

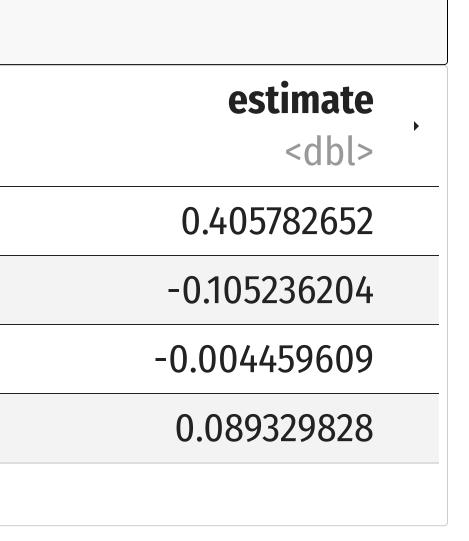
Georgia

After

Georgia:After

4 rows | 1-2 of 5 columns

Enrolled_{*it*} = 0.406 - 0.105 Georgia_{*i*} - 0.004 After_{*t*} + 0.089 (Georgia_{*i*} × After_{*t*})



Example: Interpretting the Regression

Enrolled_{*it*} = 0.406 - 0.105 Georgia_{*i*} - 0.004 After_{*t*} + 0.089 (Georgia_{*i*} × After_{*t*})

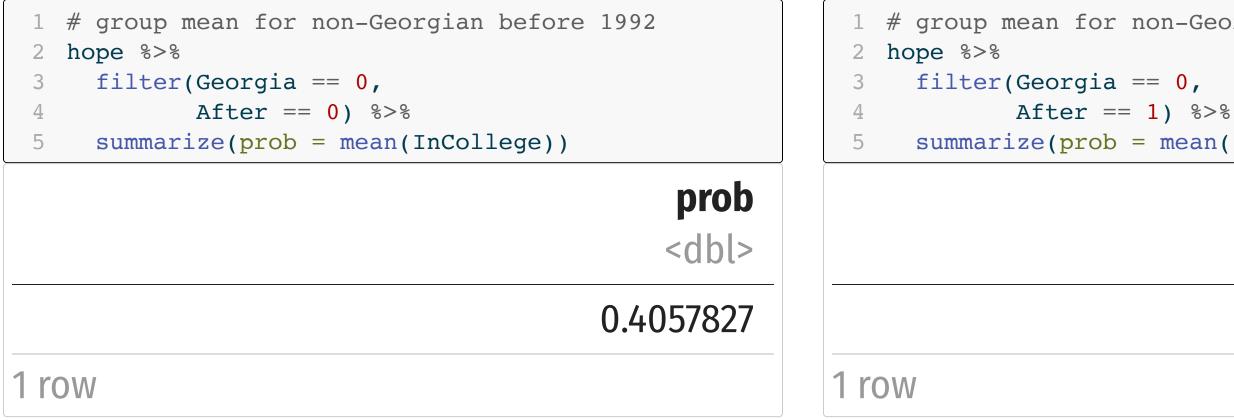
- β_0 : A **non-Georgian before** 1992 was 40.6% likely to be a college student
- β_1 : Georgians before 1992 were 10.5% less likely to be college students than neighboring states
- β_2 : After 1992, non-Georgians are 0.4% less likely to be college students
- β_3 : After 1992, Georgians are 8.9% more likely to enroll in colleges than neighboring states
- Treatment effect: HOPE increased enrollment likelihood by 8.9%

Example: Comparing Group Means

 $Enrolled_{it} = 0.406 - 0.105 Georgia_i - 0.004 After_t + 0.089 (Georgia_i \times After_t)$

- A group mean for a dummy Y is $\mathbb{E}[Y = 1]$, i.e. the probability a student is enrolled:
- Non-Georgian enrollment probability pre-1992: $\beta_0 = 0.406$
- Georgian enrollment probability pre-1992: $\beta_0 + \beta_1 = 0.406 0.105 = 0.301$
- Non-Georgian enrollment probability post-1992: $\beta_0 + \beta_2 = 0.406 0.004 = 0.402$
- Georgian enrollment probability post-1992: $\beta_0 + \beta_1 + \beta_2 + \beta_3 = 0.406 - 0.105 - 0.004 + 0.089 = 0.386$

Example: Comparing Group Means in R



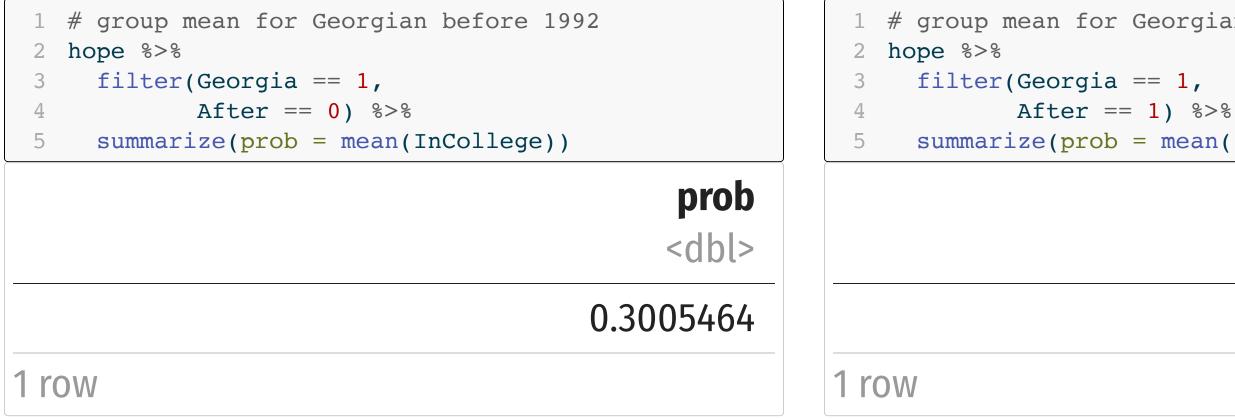
1 # group mean for non-Georgian AFTER 1992

summarize(prob = mean(InCollege))

prob <dpl>

0.401323

Example: Comparing Group Means in R



group mean for Georgian AFTER 1992

summarize(prob = mean(InCollege))

prob <dpl>

0.3854167

38

Example: Diff-in-Diff Summary

 $Enrolled_{it} = 0.406 - 0.105 Georgia_i - 0.004 After_t + 0.089 (Georgia_i \times After_t)$

	Neighbors	Georgia	
Before	0.406	0.301	
After	0.402	0.386	
Time Diff (ΔY_t)	-0.004	0.085	

 $\Delta_i \Delta_t Enrolled = (GA_{after} - GA_{before}) - (neighbors_{after} - neighbors_{before})$ = (0.386 - 0.301) - (0.402 - 0.406)= (0.085) - (-0.004)= 0.089

Group Diff (ΔY_i) -0.1050.016 **Diff-in-diff**: 0.089

Diff-in-Diff Summary & Data

TABLE 2 DIFFERENCE-IN-DIFFERENCES SHARE OF 18-19-YEAR-OLDS ATTENDING COLLEGE OCTOBER CPS, 1989–97

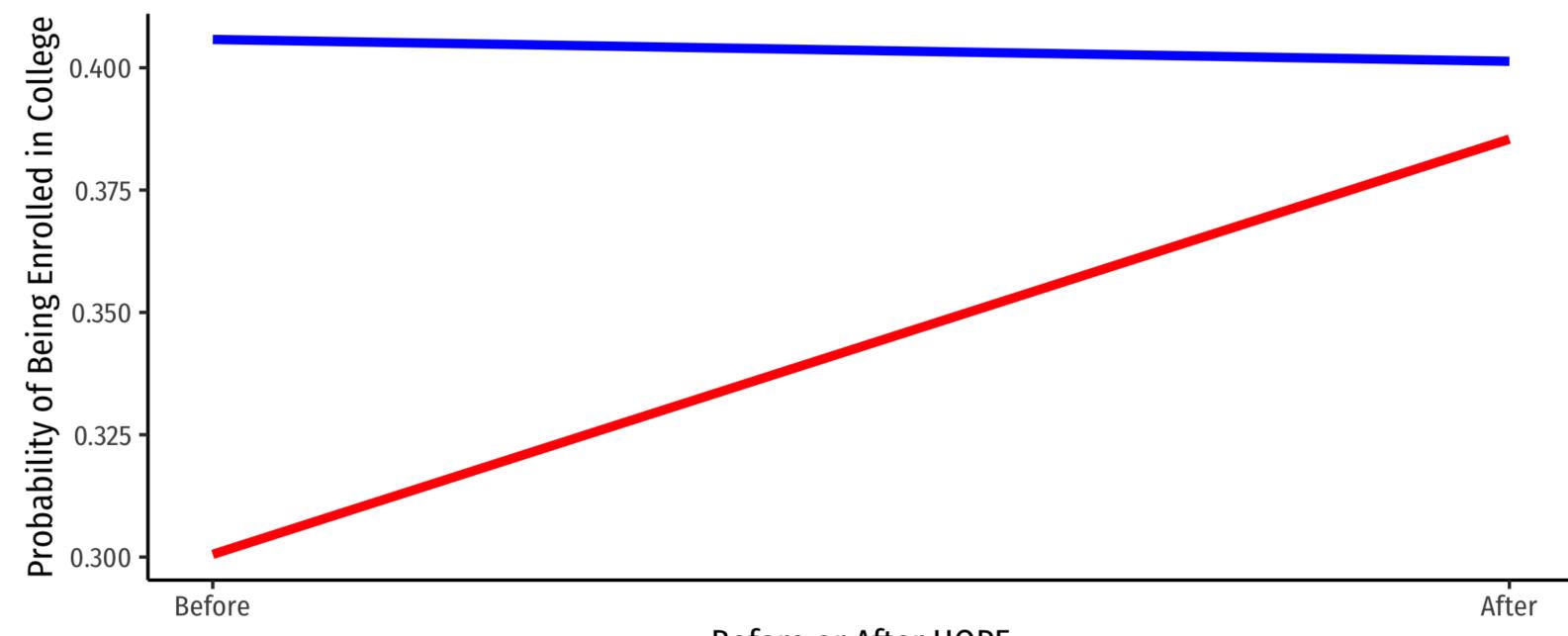
Before 1993	1993 and After	Difference
0.300	0.378	0.078
0.415	0.414	-0.001
0.115	0.036	0.079
	0.300 0.415	0.300 0.378 0.415 0.414

Note: Means are weighted by CPS sample weights. The Southeastern states are defined in the note to Table 1.

Dynarski, Susan, 1999, "Hope for Whom? Financial Aid for the Middle Class and its Impact on College Attendance," National Tax Journal 53(3): 629-661

Example: Diff-in-Diff Graph

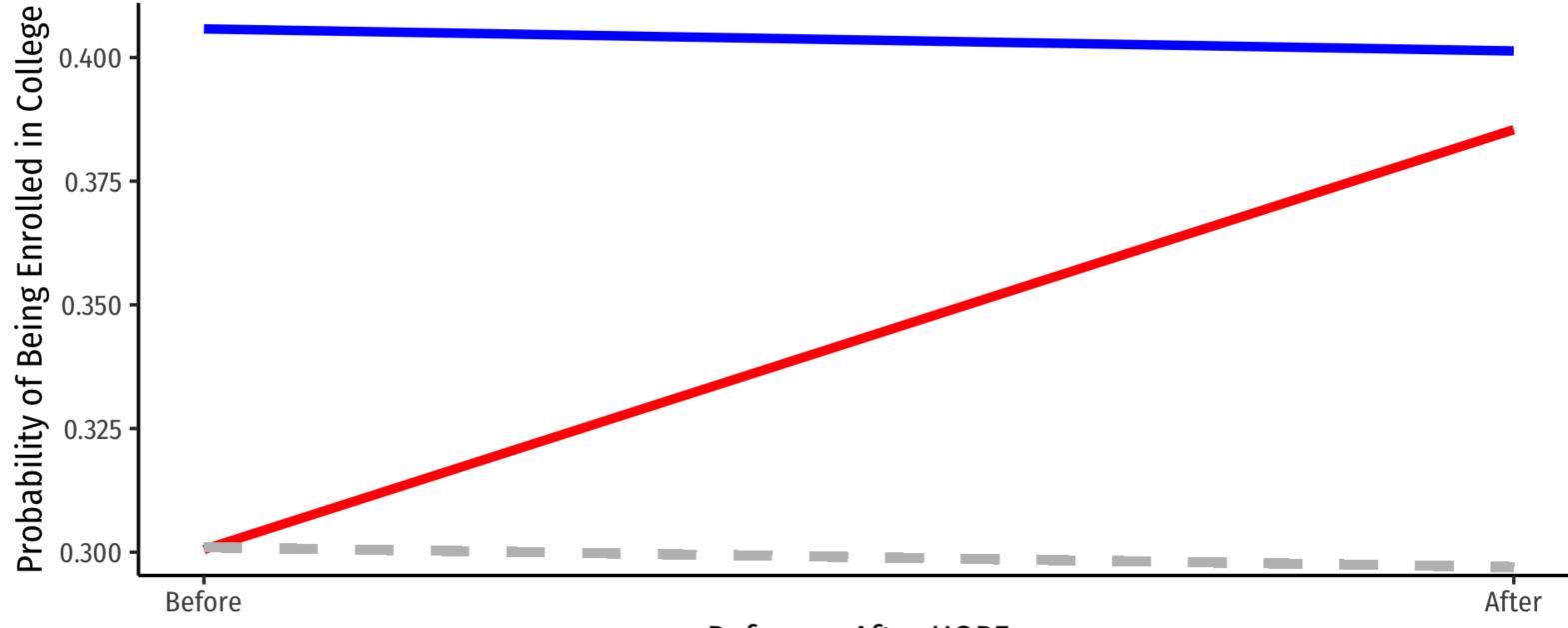
State — Neighbors — Georgia



Before or After HOPE

Example: Diff-in-Diff Graph

State — Neighbors — Georgia



Before or After HOPE

Generalizing DND Models

Generalizing DND Models

• DND can be **generalized** with a **two-way fixed effects** model:

 $\hat{Y}_{it} = \beta_1 (\text{Treated}_i \times \text{After}_t) + \alpha_i + \theta_t + \nu_{it}$

- α_i : group fixed effects (treatments/control groups)
- θ_t : time fixed effects (pre/post treatment)
- β_1 : diff-in-diff (interaction effect, β_3 from before)
- Flexibility: *many* periods (not just before/after), *many* different treatment(s)/groups, and treatment(s) can occur at different times to different units (so long as some do not get treated)
- Can also add control variables that vary within units and over time

$$\hat{Y}_{it} = \beta_1 (\text{Treated}_i \times \text{After}_t) + \beta_2 X_{it} + \dots + \alpha_k$$

FCON 480 — Fconometrics

45

Our Example, Generalized I

$$\widehat{\text{Enrolled}}_{it} = \beta_1 \left(\text{Georgia}_i \times \text{After}_t \right) + \alpha$$

- StateCode is a variable for the State \implies create State fixed effect (α_i)
- Year is a variable for the year \implies create year fixed effect (θ_t)

$u_i + \theta_t +$

Our Example, Generalized II

Using LSDV method:

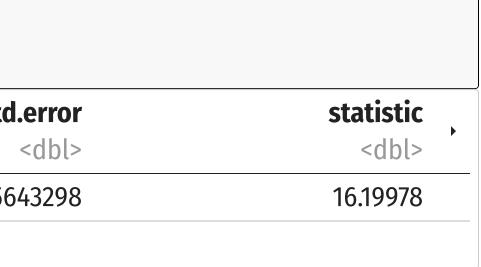
term	estimate	std.error
<chr></chr>	<dbl></dbl>	<dbl></dbl>
(Intercept)	0.418057478	0.02261133
Georgia	-0.141501255	0.03936119
After	0.075340594	0.03128021
factor(StateCode)57	-0.014181112	0.02739708
factor(StateCode)58	NA	NA
factor(StateCode)59	-0.062378540	0.01954266
factor(StateCode)62	-0.132650271	0.02806143
factor(StateCode)63	-0.005103868	0.02627780
factor(Year)90	0.046608845	0.02833625
factor(Year)91	0.032275789	0.02856877
-10 of 17 rows 1-3 of 5 columns		Previous 1 2 Ne

Our Example, Generalized II

Using fixest

<pre>1 library(fixest) 2 DND_fe_2 <- feols(InCollege ~ Georgia*After 3</pre>	<pre>factor(StateCode) + factor(Year),</pre>	
term <chr></chr>	estimate <dbl></dbl>	std
Georgia:After	0.0914202	0.0056
1 row 1-4 of 5 columns		

 $\widehat{\text{InCollege}}_{it} = 0.091 (\operatorname{Georgia}_i \times \operatorname{After}_{it}) + \alpha_i + \theta_t$



Our Example, Generalized, with Controls II

Using LSDV Method

term	estimate	std.error
<chr></chr>	<dpl></dpl>	<dpl></dpl>
(Intercept)	0.735574222	0.02990710
Georgia	-0.108940276	0.04765262
After	-0.005753553	0.03737027
factor(StateCode)57	-0.043406073	0.03047696
factor(StateCode)58	NA	NA
factor(StateCode)59	-0.053175645	0.02306160
factor(StateCode)62	-0.116104615	0.03283310
factor(StateCode)63	0.007389866	0.03056444
factor(Year)90	0.039364315	0.03326291
factor(Year)91	0.029227969	0.03347850
-10 of 19 rows 1-3 of 5 columns		Previous 1 2 Ne

Our Example, Generalized, with Controls II

Using fixest

term	estimate	std.error
<chr></chr>	<dpl></dpl>	<dpl></dpl>
Black	-0.09398715	0.01273233
LowIncome	-0.30172426	0.03066188
Georgia:After	0.02343679	0.01281838

 $InCollege_{it} = 0.023 (Georgia_i \times After_{it}) - 0.094 Black_{it} - 0.302 LowIncome_{it}$

Our Example, Generalized, with Controls III

	No FE	TWFE	TWFE
Constant	0.40578***		
	(0.01092)		
Georgia	-0.10524***		
	(0.03778)		
After	-0.00446		
	(0.01585)		
Georgia x After	0.08933*	0.09142***	0.02344
	(0.04889)	(0.00564)	(0.01282)
Black			-0.09399***
			(0.01273)
LowIncome			-0.30172***
			(0.03066)
n	4291	4291	2967
Adj. R ²	0.00		
SER	0.49	0.49	0.47
* p < 0.1, ** p < 0.0	05, *** p < 0.0 ⁻	1	

ECON 480 — Econometrics

The Findings

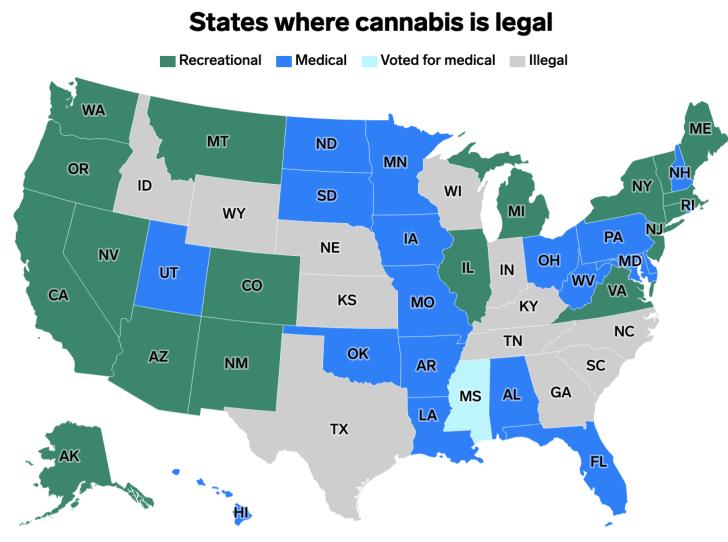
TABLE 3 COLLEGE ATTENDANCE OF 18–19–YEAR–OLDS OCTOBER CPS, 1989–97 CONTROL GROUP: SOUTHEASTERN STATES			
	(1) Difference–in– Differences	(2) Add Covariates	(3) Add Local Economic Conditions Controls
After*Georgia	0.079 (0.029)	0.075 (0.030)	0.070 (0.030)
Georgia	-0.115 (0.023)	-0.100 (0.019)	0.097 (0.018)
After	-0.001 (0.018)		
Age 18		-0.042 (0.014)	-0.042 (0.016)
Metro Resident		0.042 (0.016)	0.042 (0.015)
Black		0.134 (0.014)	0.133 (0.015)
State Unemployment Rate			0.005 (0.007)
Year Dummies R² N	0.003 6,811	Yes 0.023 6,811	Yes 0.023 6,811

Note: Regressions are weighted by CPS sample weights. Standard errors are adjusted for heteroskedasticity and correlation within state-year cells. The Southeastern states are defined in the note to Table 1.

Dynarski, Susan, 1999, "Hope for Whom? Financial Aid for the Middle Class and its Impact on College Attendance," National Tax Journal 53(3): 629-661

Intuition behind DND

- Diff-in-diff models are the quintessential example of exploiting **natural experiments**
- A major change at a point in time (change in law, a natural disaster, political crisis) separates groups where one is affected and another is not-identifies the effect of the change (treatment)
- One of the cleanest and clearest causal identification strategies



Note: Updated as of July 2, 2021

Example II: "The" Card-Kreuger Minimum Wage Study

Example: "The" Card-Kreuger Minimum Wage Study I

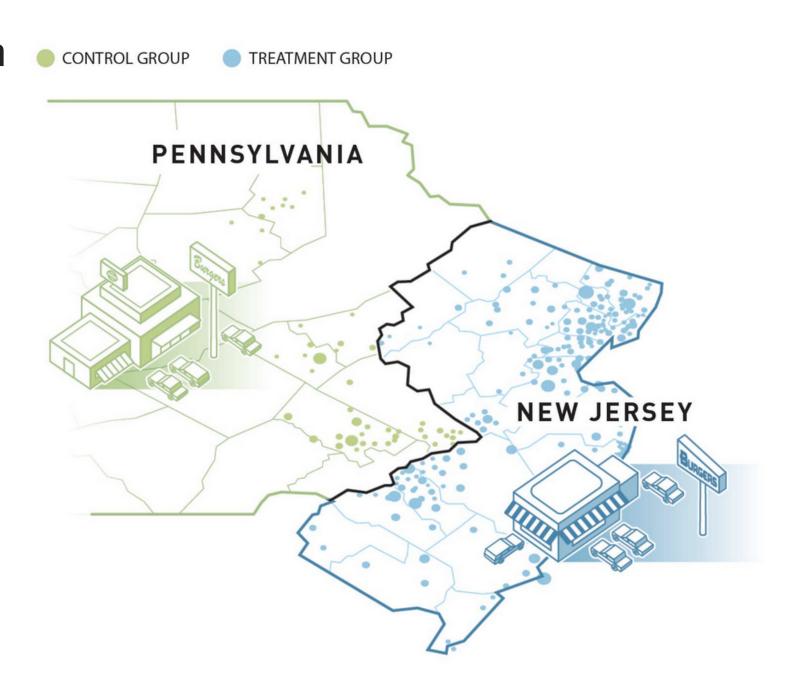
Example

The controversial minimum wage study, Card & Kreuger (1994) is a quintessential (and clever) diff-in-diff.]

Card, David, Krueger, Alan B, (1994), "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania," American Economic Review 84 (4): 772–793

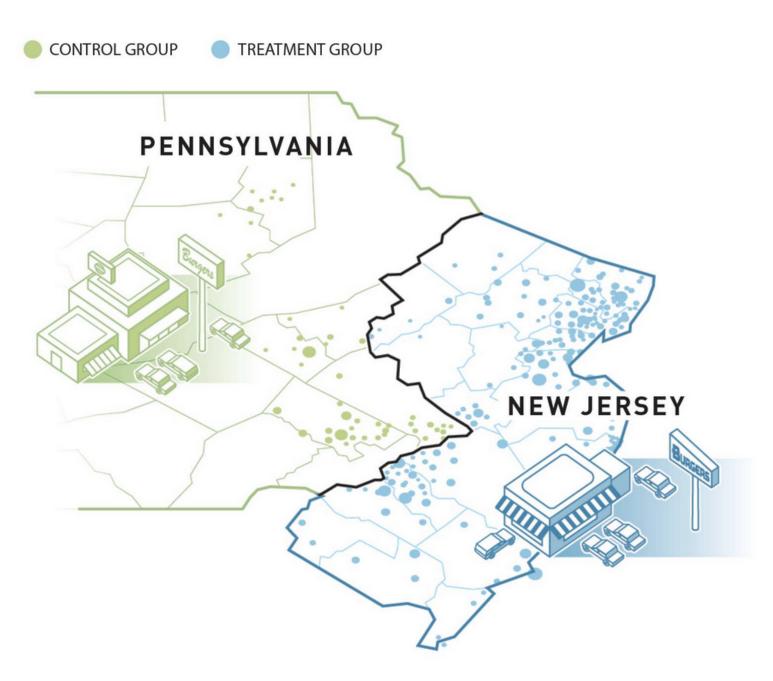
Card & Kreuger (1994): Background I

- Card & Kreuger (1994) compare employment in fast food restaurants on New Jersey and Pennsylvania sides of border between February and November 1992.
- Pennsylvania & New Jersey both had a minimum wage of \$4.25 before February 1992
- In February 1992, New Jersey raised minimum wage from \$4.25 to \$5.05

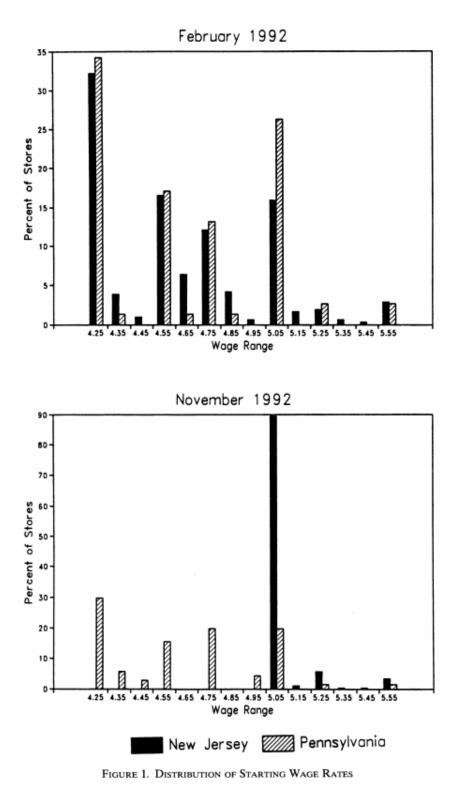


Card & Kreuger (1994): Background II

- If we look only at New Jersey before & after change:
 - **Omitted variable bias**: macroeconomic variables (there's a recession!), weather, etc.
 - Including PA as a control will control for these time-varying effects if they are national trends
- Surveyed 400 fast food restaurants on each side of the border, before & after min wage increase
 - Key assumption: Pennsylvania and New Jersey follow parallel trends,
 - **Counterfactual**: if not for the minimum wage increase, NJ employment would have changed similar to PA employment



Card & Kreuger (1994): Comparisons



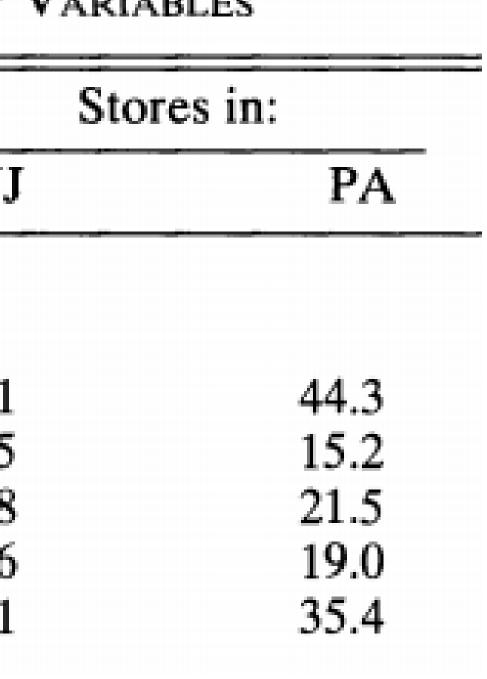
Card & Kreuger (1994): Summary I

		Sto	ores in:
	All	NJ	PA
Wave 1, February 15–March 4, 1992:			
Number of stores in sample frame: ^a	473	364	109
Number of refusals:	63	33	30
Number interviewed:	410	331	79
Response rate (percentage):	86.7	90.9	72.5
Wave 2, November 5 – December 31, 1992:			
Number of stores in sample frame:	410	331	79
Number closed:	6	5	1
Number under rennovation:	2	2	0
Number temporarily closed: ^b	2	2	0
Number of refusals:	1	1	0
Number interviewed: ^c	399	321	78

Card & Kreuger (1994): Summary II

TABLE 2-MEANS OF KEY VARIABLES

Variable	NJ
1. Distribution of Store Types (percentages):	
a. Burger King	41.1
b. KFC	20.5
c. Roy Rogers	24.8
d. Wendy's	13.6
e. Company-owned	34.1



Card & Kreuger (1994): Model

 $Employment_{it} = \beta_0 + \beta_1 NJ_i + \beta_2 After_t + \beta_3 (NJ_i \times After_t)$

- PA Before: β_0
- PA After: $\beta_0 + \beta_2$
- NJ Before: $\beta_0 + \beta_1$
- NJ After: $\beta_0 + \beta_1 + \beta_2 + \beta_3$
- Diff-in-diff: $(NJ_{after} NJ_{before}) (PA_{after} PA_{before})$

	PA	NJ	Group Diff (ΔY_i)
Before	β_0	$\beta_0 + \beta_1$	β_1
After	$\beta_0 + \beta_2$	$\beta_0 + \beta_1 + \beta_2 + \beta_3$	$\beta_1 + \beta_3$
TimeDiff (ΔY_t)	β_2	$\beta_2 + \beta_3$	Diff-in-diff $\Delta_i \Delta_t : \beta_3$

Card & Kreuger (1994): Results

	Stores by state		y state
Variable	PA (i)	NJ (ii)	Difference NJ – PA (iii)
1. FTE employment before,	23.33	20.44	-2.89
all available observations	(1.35)	(0.51)	(1.44)
FTE employment after,	21.17	21.03	-0.14
all available observations	(0.94)	(0.52)	(1.07)
Change in mean FTE	- 2.16	0.59	2.76
employment	(1.25)	(0.54)	(1.36)

ce, A

