Multivariate Regression Concepts

Ryan Safner

ECON 480 - Econometrics - Final Exam

Multivariate Regression

- Omitted Variable Bias
 - A variable Z causes omitted variable bias if:
 - 1. $corr(X, Z) \neq 0, X$ and Z are correlated
 - 2. $corr(Z, Y) \neq 0, Z$ is in the error term that explains Y
 - Omitted variable bias can be avoided by including Z in the regression (as X_2)
- Multivariate Regression Model

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_{1i} + \widehat{\beta}_2 X_{2i} + \widehat{\epsilon}_i$$

- $-\hat{\beta}_0$: predicted value of \hat{Y}_i when $X_{1i} = 0; X_{2i} = 0$
- $-\hat{\beta}_1 = \frac{\Delta Y_i}{\Delta X_{1i}}$, marginal effect of X_{1i} on Y_i , holding X_{2i} constant $-\hat{\beta}_2 = \frac{\Delta Y_i}{\Delta X_{2i}}$, marginal effect of X_{2i} on Y_i , holding X_{1i} constant
- Measuring Omitted Variable Bias
 - Suppose we omit X_{2i} and run an Omitted Regression

$$Y_i = \alpha_0 + \alpha_1 X_{1i} + \nu_i$$

- If we run an Auxiliary Regression of X_{2i} on X_{1i} :

$$X_{2i} = \delta_0 + \delta_1 X_{1i} + \tau_i$$

* Size and significance of δ_1 measures relationship between X_{1i} and X_{2i}

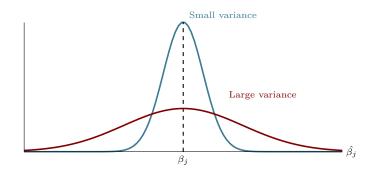
$$\alpha_1 = \beta_1 + \beta_2 \delta_1$$

- Biased estimate α_1 in Omitted Regression picks up:
 - * True effect of X_{1i} on Y_i (β_1)
 - * Effect of X_{2i} on Y_i (β_2) as pulled through the relationship between X_{1i} and X_{2i} (δ_1)
- Conditions for Z being an omitted variable
 - * Z_i must be a determinant of Y_i ($\beta_2 \neq 0$)
 - * Z_i is correlated with X_{1i} ($\delta_1 \neq 0$)
- Variance of OLS estimators $\hat{\beta}_i$

$$var[\hat{\beta}_j] = \frac{1}{(1 - R_j^2)} * \frac{\hat{\sigma}^2}{n \times var[X_j]}$$

and Standard error

$$s.e.[\hat{\beta}_j] = \sqrt{var[\hat{\beta}_j]}$$



 $\hat{\beta_j}$ is a random variable, so it has its own sampling distribution with mean $E[\hat{\beta_j}]$ and standard error $se[\hat{\beta_j}]$

- Affected by 4 major factors:
 - 1. Model fit, where SER= $\hat{\sigma}$
 - 2. Sample size n
 - 3. Variation in X_j
 - 4. Variance Inflation Factor (VIF) $\frac{1}{1-R_i^2}$
 - Independent variables are **multicollinear** if they are correlated

$$corr(X_j, X_l) \neq 0$$
 for $j \neq l$

- Does not bias estimators, but increases their variance & standard errors
- $-R_i^2$ is the R^2 from an auxiliary regression of X_j on all other regressors
- VIF quantifies how by many times the variance of $\hat{\beta}_j$ increased because of multicollinearity * VIF > 10 (or $\frac{1}{VIF} > 0.10$) is bad
- Perfect multicollinearity when a regressor is an exact linear function of (an)other regressor(s) cannot run a regression, a logical impossibility

$$|corr(X_1, X_2)| = 1$$

Dummy Variables

• Dummy variable

$$D_i = \begin{cases} 1 & \text{if } i \text{ meets condition} \\ 0 & \text{if } i \text{ does not meet condition} \end{cases}$$

• Dummy variables measure group means

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 D_i$$

- When $D_i = 0$ (Control group):
 - * $\hat{Y}_i = \hat{\beta}_0$
 - * $E[Y|D_i = 0] = \hat{\beta}_0 \iff$ the mean of Y when $D_i = 0$
- When $D_i = 1$ (Treatment group):
 - $* \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 D_i$
 - * $E[Y|D_i = 1] = \hat{\beta}_0 + \hat{\beta}_1 \iff$ the mean of Y when $D_i = 1$
- Difference in group means:

$$= E[Y_i | D_i = 1] - E[Y_i | D_i = 0]$$

= $(\hat{\beta}_0 + \hat{\beta}_1) - (\hat{\beta}_0)$
= $\hat{\beta}_1$

- Transforming categorical variables into dummies
 - A categorical variable (e.g. region, class standing, etc) can be added to a regression by making each category option a dummy variable and including them all (minus one)

$$Y_i = \beta_0 + \beta_2 D_1 + \beta_2 D_2 + \beta_3 D_3$$

where observations can fall into category 1, 2, 3, or 4

- Including all category option dummies into a regression yields the dummy variable trap, where all dummies are perfectly multicollinear
- Must drop one category dummy, the "reference group"
- Coefficients on dummy variables are the difference between that category and the reference category:
 - * $\beta_0 = Y$ for category 4 (omitted)
 - * β_1 = difference between category 1 and category 4 (omitted)
 - * β_2 = difference between category 2 and category 4 (omitted)
 - * β_3 = difference between category 3 and category 4 (omitted)
- Interaction terms measure if there is an additional effect of one variable on the value of another, 3 combinations:
 - 1. Between a dummy and a continuous variable

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 \mathbf{X_i} \times \mathbf{D_i}$$

- Coefficients:

- * β_0 : Y_i for $X_i = 0$ and $D_i = 0$
- * β_1 : Effect of $X_i \to Y_i$ for $D_i = 0$
- * β_2 : Effect on Y_i of difference between $D_i = 0$ and $D_i = 1$

- * β_3 : Effect of difference of $X_i \to Y_i$ between $D_i = 0$ and $D_i = 1$
- Easier to see as two different regression lines:
 - * When $D_i = 0$ (Control group):

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

* When $D_i = 1$ (Treatment group):

$$\hat{Y}_i = (\hat{\beta}_0 + \hat{\beta}_2) + (\hat{\beta}_1 + \hat{\beta}_3)X_i$$



- * Two regression lines may have (same/different) intercepts and (same/different) intercepts, test significance of:
 - · β_2 : difference in intercepts
- · β_3 : difference in slopes
- 2. Between two dummy variables

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 \mathbf{D_{1i}} \times \mathbf{D_{2i}}$$

- Coefficients:
 - * β_0 : value of Y for $D_{1i} = 0$ and $D_{2i} = 0$
 - * β_1 : effect on Y of $D_{1i} = 0 \rightarrow 1$ when $D_{2i} = 0$
 - * β_2 : effect on Y of $D_{2i} = 0 \rightarrow 1$ when $D_{1i} = 0$
 - * β_3 : increment to effect on Y of $D_{1i} = 0 \rightarrow 1$ when $D_{2i} = 1$ vs. when $D_{2i} = 0$
- Compare difference in group means:
 - * $D_{1i} = 0, D_{2i} = 0$: $\hat{Y}_i = \hat{\beta}_0$
 - * $D_{1i} = 0, D_{2i} = 1$: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_2$

 - * $D_{1i} = 1, D_{2i} = 0$: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1$ * $D_{1i} = 1, D_{2i} = 1$: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3$
- 3. Between two continuous variables

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (\mathbf{X_{1i}} \times \mathbf{X_{2i}})$$

- Marginal effects:
 - * $\frac{\Delta Y_i}{\Delta X_{1i}} = \beta_1 + \beta_3 X_{2i}$ marginal effect of $X_{1i} \to Y_i$ depends on X_{2i} * $\frac{\Delta Y_i}{\Delta X_{2i}} = \beta_2 + \beta_3 X_{1i}$ marginal effect of $X_{2i} \to Y_i$ depends on X_{1i}

Transforming Variables

• Polynomial functions

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + \hat{\beta}_{2}X_{i}^{2} + \dots + \hat{\beta}_{r}X_{i}^{r} + \epsilon_{i}$$

where r is highest power X_i is raised to, a function with r-1 bends

- Quadratic model

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 X_i^2 + \epsilon_i$$

* Marginal effect of $X_i \to Y_i$:

$$\frac{d Y_i}{d X_i} = \hat{\beta}_1 + 2\hat{\beta}_2 X_i$$

* Value of X_i where Y_i is minimized/maximized:

$$X_i^* = -\frac{1}{2}\frac{\beta_1}{\beta_2}$$

- To determine if a higher-powered term is necessary, test significance of its associated coefficient (e.g. β_2 for quadratic model above)
- To determine if a model is nonlinear, run F-test of all higher-powered terms
- Logarithmic functions (ln)
 - Natural Logs (ln) are used to talk about percentage changes, 3 types of models:
 - 1. Linear-log model:

$$Y = \beta_0 + \beta_1 \ln(\mathbf{X})$$

* β_1 : A 1% change in $X \to \frac{\beta_1}{100}$ unit change in Y

2. Log-linear model:

$$\ln(\mathbf{Y}) = \beta_0 + \beta_1 X$$

* β_1 : A 1 unit change in $X \to 100 \times \beta_1 \%$ change in Y

3. Log-log model:

$$\ln(\mathbf{Y}) = \beta_0 + \beta_1 \ln(\mathbf{X})$$

- * β_1 : A 1% change in $X \to \beta_1$ % change in Y (elasticity between X and Y)
- Standardized coefficients

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}$$

- To compare the magnitude of marginal effects (e.g. is $\beta_1 > \beta_2$) across variables of different units, standardize the variables by taking the Z-score of all observations

$$Variable_{std} = \frac{Variable - Variable}{sd(Variable)}$$

- Coefficients measure the # of standard deviations change of Y a 1 std. dev. change in X causes

- Joint Hypothesis Testing
 - Joint hypothesis tests against the null hypothesis of a value for multiple parameters, e.g.

$$H_0:\beta_1 = 0, \beta_2 = 0$$
$$H_1:H_0 \text{ is false}$$

- Three common tests

1. $H_0: \ \beta_1 = \beta_2 = 0$, testing if multiple variables do not affect Y

- 2. $H_0: \beta_1 = \beta_2$, testing if multiple variables have the same effect (must be same units)
- 3. H_0 : all β 's= 0, the model overall explains no variation in Y
- In general, with q restrictions:

$$H_0: \beta_j = \beta_{j,0}, \beta_k = \beta_{k,0}, \dots$$
for q restrictions

- Use the F-statistic, (simplified homoskedastic formula below)

$$F_{q,n-k-1} = \frac{\left(\frac{(R_u^2 - R_r^2)}{q}\right)}{\left(\frac{(1 - R_u^2)}{(n - k - 1)}\right)}$$

- Compares the R^2 's of two models:
 - * Unrestricted model: regression with all coefficients
 - * Restricted model: regression under the null hypothesis (e.g. where $\beta_1 = 0, \beta_2 = 0$)
- F tests if the increase in \mathbb{R}^2 from including the suspect variables (*Restricted* \rightarrow *Unrestricted*) increases by a statistically significant amount

Panel Data

• Panel data tracks the same individuals (a cross-section) over time (time-series)

$$\widehat{Y_{it}} = \beta_0 + \beta_1 X_{it} + \epsilon_{it}$$

with N number of i groups and T number of t time periods

- A pooled model simply runs this as normal OLS regression
 - Biased: ignores factors correlated with X in ϵ
 - Systematic differences across groups i that may be stable over time
 - Systematic differences across time t that may be stable across groups
- (One-Way) Fixed effects model

$$\widehat{Y_{it}} = \beta_0 + \beta_1 X_{it} + \alpha_i + \nu_{it}$$

- $-\alpha_i$: group-fixed effect (pulled from error term ϵ_{it})
 - * Includes *all* differences across groups that do not change over time! (e.g. geography, culture, etc. of Maryland vs. Alaska)
 - * Does *not* include variables that change over time!
 - * Estimates a different intercept for each group
- Least Squares Dummy Variable (LSDV) Approach: can estimate via creating & including a dummy variable for each group (minus 1 to avoid dummy variable trap)

$$\widehat{Y_{it}} = \beta_0 + \beta_1 X_{it} + \sum_{i=1}^{N-1} \alpha_i D_i$$

where α_i is a coefficient and D_i is a dummy variable for group *i*, for example:

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \beta_2 Alabama_i + \beta_3 Alaska_i + \dots$$

• Two-Way Fixed effects model

$$\widehat{Y_{it}} = \beta_0 + \beta_1 X_{it} + \alpha_{\mathbf{i}} + \tau_{\mathbf{t}} + \nu_{it}$$

- $-\tau_i$: time-fixed effect (pulled from error term ϵ_{it})
 - * Includes *all* differences over time that do not change across groups! (e.g. all States experience recession in 2008, or federal law change)
 - * Does not include variables that are different across groups!
 - * Estimates a different intercept for each time period
- Least Squares Dummy Variable (LSDV) Approach: can estimate via creating & including a dummy variable for each group and each time period (minus 1 for each to avoid dummy variable trap)

$$\widehat{Y_{it}} = \beta_0 + \beta_1 X_{it} + \sum_{i=1}^{N-1} \alpha_i D_i + \sum_{t=1}^{T-1} \tau_i D_t$$

where α_i and τ_t are coefficients, D_i is a dummy variable for group *i*, and D_t is a dummy variable for time period *t*, for example:

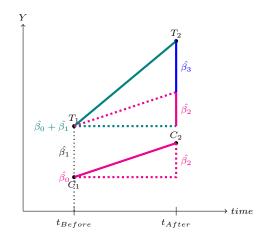
$$Y_{it} = \beta_0 + \beta_1 X_{it} + \beta_2 A labama_i + \beta_3 A laska_i + \dots + \beta_{51} 2000_t + \beta_{52} 2001_t + \dots$$

• Difference-in-Differences model

$$\hat{Y_{it}} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_{it} + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + \epsilon_{it}$$

- Where:
 - * Treated_i = 1 if unit *i* is in treatment group
 - * After_{it} = 1 if observation it is after treatment period

		Control	Treatment	Group Diff. (ΔY_i)
	Before	β_0	$\beta_0 + \beta_1$	β_1
	After	$\beta_0 + \beta_2$	$\beta_0 + \beta_1 + \beta_2 + \beta_3$	$\beta_1 + \beta_3$
Tir	me Diff. (ΔY_t)	β_2	$\beta_2 + \beta_3$	β_3
				Diff-in-diff $(\Delta \Delta Y)$



 $\Delta \Delta Y = (Treated_{after} - Treated_{before}) - (Control_{after} - Control_{before})$

- OLS Coefficients:

- * $\hat{\beta_0}$: value of Y for control before treatment
- * $\hat{\beta}_1$: difference between treatment and control (before treatment)
- * $\hat{\beta}_2$: time difference between before and after treatment
- * $\hat{\beta}_3$: difference-in-difference: effect of treatment
- Values of Y for different groups:
 - * Y for Control Group Before: $\hat{\beta}_0$
 - * Y for Control Group After: $\hat{\beta}_0 + \hat{\beta}_2$
 - * Y for Treatment Group Before: $\hat{\beta}_0 + \hat{\beta}_1$
 - * Y for Treatment Group After: $\hat{\beta_0}+\hat{\beta_1}+\hat{\beta_2}+\hat{\beta_3}$
 - * Treatment Effect: $\hat{\beta}_3$
- Key assumption about *counterfactual*: if not for treatment, the treated group would change the same over time as the control group (parallel time trends, magenta dotted line)
- Can generalize the model with two way fixed effects:

$$Y_{it} = \alpha_i + \tau_t + \beta_3 (\text{Treated}_i \times \text{After}_t) + X_{it} + \epsilon_{it}$$

- * α_i : group-fixed effects, where some groups receive treatment and others do not
- * τ_t : time-fixed effects, where some periods are before treatment and others are after
- * X_{it} : other control variables
- * This allows for multiple treatments to happen at different times!