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Multivariate Regression

• Omitted Variable Bias

– A variable Z causes omitted variable bias if:

1. corr(X,Z) 6= 0, X and Z are correlated

2. corr(Z, Y ) 6= 0, Z is in the error term that explains Y

– Omitted variable bias can be avoided by including Z in the regression (as X2)

• Multivariate Regression Model
Ŷi = β̂0 + β̂1X1i + β̂2X2i + ε̂i

– β̂0: predicted value of Ŷi when X1i = 0;X2i = 0

– β̂1 =
∆Yi

∆X1i
, marginal effect of X1i on Yi, holding X2i constant

– β̂2 =
∆Yi

∆X2i
, marginal effect of X2i on Yi, holding X1i constant

• Measuring Omitted Variable Bias

– Suppose we omit X2i and run an Omitted Regression

Yi = α0 + α1X1i + νi

– If we run an Auxiliary Regression of X2i on X1i:

X2i = δ0 + δ1X1i + τi

∗ Size and significance of δ1 measures relationship between X1i and X2i

α1 = β1 + β2δ1

– Biased estimate α1 in Omitted Regression picks up:

∗ True effect of X1i on Yi (β1)

∗ Effect of X2i on Yi (β2) as pulled through the relationship between X1i and X2i (δ1)

– Conditions for Z being an omitted variable

∗ Zi must be a determinant of Yi (β2 6= 0)

∗ Zi is correlated with X1i (δ1 6= 0)

• Variance of OLS estimators β̂j

var[β̂j ] =
1

(1−R2
j )
∗ σ̂2

n× var[Xj ]

and Standard error

s.e.[β̂j ] =

√
var[β̂j ]
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βj

Small variance

Large variance

β̂j

β̂j is a random variable, so it has its own sampling distribution with mean E[β̂j ] and standard error se[β̂j ]

• Affected by 4 major factors:

1. Model fit, where SER=σ̂

2. Sample size n

3. Variation in Xj

4. Variance Inflation Factor (VIF) 1
1−R2

j

– Independent variables are multicollinear if they are correlated

corr(Xj , Xl) 6= 0 for j 6= l

– Does not bias estimators, but increases their variance & standard errors

– R2
j is the R2 from an auxiliary regression of Xj on all other regressors

– VIF quantifies how by many times the variance of β̂j increased because of multicollinearity

∗ V IF > 10 (or 1
V IF > 0.10) is bad

– Perfect multicollinearity when a regressor is an exact linear function of (an)other regres-
sor(s) – cannot run a regression, a logical impossibility

|corr(X1, X2)| = 1
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Dummy Variables

• Dummy variable

Di =

{
1 if i meets condition
0 if i does not meet condition

• Dummy variables measure group means

Ŷi = β̂0 + β̂1Di

– When Di = 0 (Control group):

∗ Ŷi = β̂0
∗ E[Y |Di = 0] = β̂0 ⇐⇒ the mean of Y when Di = 0

– When Di = 1 (Treatment group):

∗ Ŷi = β̂0 + β̂1Di

∗ E[Y |Di = 1] = β̂0 + β̂1 ⇐⇒ the mean of Y when Di = 1

– Difference in group means:

= E[Yi|Di = 1]− E[Yi|Di = 0]

= (β̂0 + β̂1)− (β̂0)

= β̂1

• Transforming categorical variables into dummies

– A categorical variable (e.g. region, class standing, etc) can be added to a regression by making
each category option a dummy variable and including them all (minus one)

Yi = β0 + β2D1 + β2D2 + β3D3

where observations can fall into category 1, 2, 3, or 4

– Including all category option dummies into a regression yields the dummy variable trap, where
all dummies are perfectly multicollinear

– Must drop one category dummy, the “reference group”

– Coefficients on dummy variables are the difference between that category and the reference cate-
gory:

∗ β0 = Y for category 4 (omitted)

∗ β1 = difference between category 1 and category 4 (omitted)

∗ β2 = difference between category 2 and category 4 (omitted)

∗ β3 = difference between category 3 and category 4 (omitted)

• Interaction terms measure if there is an additional effect of one variable on the value of another, 3
combinations:

1. Between a dummy and a continuous variable

Yi = β0 + β1Xi + β2Di + β3Xi ×Di

– Coefficients:

∗ β0: Yi for Xi = 0 and Di = 0

∗ β1: Effect of Xi → Yi for Di = 0

∗ β2: Effect on Yi of difference between Di = 0 and Di = 1
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∗ β3: Effect of difference of Xi → Yi between Di = 0 and Di = 1

– Easier to see as two different regression lines:

∗ When Di = 0 (Control group):

Ŷi = β̂0 + β̂1Xi

∗ When Di = 1 (Treatment group):

Ŷi = (β̂0 + β̂2) + (β̂1 + β̂3)Xi

X

Y

β̂0

slope=β̂1

β̂0 + β̂2

slope=β̂1 + β̂3

∗ Two regression lines may have (same/different) intercepts and (same/different) intercepts,
test significance of:

· β2: difference in intercepts

· β3: difference in slopes

2. Between two dummy variables

Yi = β0 + β1D1i + β2D2i + β3D1i ×D2i

– Coefficients:

∗ β0: value of Y for D1i = 0 and D2i = 0

∗ β1: effect on Y of D1i = 0→ 1 when D2i = 0

∗ β2: effect on Y of D2i = 0→ 1 when D1i = 0

∗ β3: increment to effect on Y of D1i = 0→ 1 when D2i = 1 vs. when D2i = 0

– Compare difference in group means:

∗ D1i = 0, D2i = 0: Ŷi = β̂0
∗ D1i = 0, D2i = 1: Ŷi = β̂0 + β̂2
∗ D1i = 1, D2i = 0: Ŷi = β̂0 + β̂1
∗ D1i = 1, D2i = 1: Ŷi = β̂0 + β̂1 + β̂2 + β̂3

3. Between two continuous variables

Yi = β0 + β1X1i + β2X2i + β3(X1i ×X2i)

– Marginal effects:

∗ ∆Yi
∆X1i

= β1 + β3X2i — marginal effect of X1i → Yi depends on X2i

∗ ∆Yi
∆X2i

= β2 + β3X1i — marginal effect of X2i → Yi depends on X1i
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Transforming Variables

• Polynomial functions
Ŷi = β̂0 + β̂1Xi + β̂2X

2
i + ...+ β̂rX

r
i + εi

where r is highest power Xi is raised to, a function with r − 1 bends

– Quadratic model
Ŷi = β̂0 + β̂1Xi + β̂2X

2
i + εi

∗ Marginal effect of Xi → Yi:
d Yi
d Xi

= β̂1 + 2β̂2Xi

∗ Value of Xi where Yi is minimized/maximized:

X∗
i = −1

2

β1
β2

– To determine if a higher-powered term is necessary, test significance of its associated coefficient
(e.g. β2 for quadratic model above)

– To determine if a model is nonlinear, run F -test of all higher-powered terms

• Logarithmic functions (ln)

– Natural Logs (ln) are used to talk about percentage changes, 3 types of models:

1. Linear-log model:
Y = β0 + β1ln(X)

∗ β1: A 1% change in X → β1

100 unit change in Y

2. Log-linear model:
ln(Y) = β0 + β1X

∗ β1: A 1 unit change in X → 100× β1% change in Y

3. Log-log model:
ln(Y) = β0 + β1ln(X)

∗ β1: A 1% change in X → β1% change in Y (elasticity between X and Y )

• Standardized coefficients
Yi = β0 + β1X1i + β2X2i

– To compare the magnitude of marginal effects (e.g. is β1 > β2) across variables of different units,
standardize the variables by taking the Z-score of all observations

V ariablestd =
V ariable− V ariable

sd(V ariable)

– Coefficients measure the # of standard deviations change of Y a 1 std. dev. change in X causes

• Joint Hypothesis Testing

– Joint hypothesis tests against the null hypothesis of a value for multiple parameters, e.g.

H0:β1 = 0, β2 = 0

H1:H0 is false

– Three common tests

1. H0: β1 = β2 = 0 , testing if multiple variables do not affect Y
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2. H0: β1 = β2, testing if multiple variables have the same effect (must be same units)

3. H0: all β’s= 0, the model overall explains no variation in Y

– In general, with q restrictions:

H0 : βj = βj,0, βk = βk,0, ...for q restrictions

– Use the F -statistic, (simplified homoskedastic formula below)

Fq,n−k−1 =

(
(R2

u −R2
r)

q

)
(

(1−R2
u)

(n− k − 1)

)
– Compares the R2’s of two models:

∗ Unrestricted model: regression with all coefficients

∗ Restricted model: regression under the null hypothesis (e.g. where β1 = 0, β2 = 0)

– F tests if the increase in R2 from including the suspect variables (Restricted → Unrestricted)
increases by a statistically significant amount
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Panel Data

• Panel data tracks the same individuals (a cross-section) over time (time-series)

Ŷit = β0 + β1Xit + εit

with N number of i groups and T number of t time periods

• A pooled model simply runs this as normal OLS regression

– Biased: ignores factors correlated with X in ε

– Systematic differences across groups i that may be stable over time

– Systematic differences across time t that may be stable across groups

• (One-Way) Fixed effects model

Ŷit = β0 + β1Xit + αi + νit

– αi: group-fixed effect (pulled from error term εit)

∗ Includes all differences across groups that do not change over time! (e.g. geography, culture,
etc. of Maryland vs. Alaska)

∗ Does not include variables that change over time!

∗ Estimates a different intercept for each group

– Least Squares Dummy Variable (LSDV) Approach: can estimate via creating & including a
dummy variable for each group (minus 1 to avoid dummy variable trap)

Ŷit = β0 + β1Xit +

N−1∑
i=1

αiDi

where αi is a coefficient and Di is a dummy variable for group i, for example:

Ŷit = β0 + β1Xit + β2Alabamai + β3Alaskai + ...

• Two-Way Fixed effects model
Ŷit = β0 + β1Xit + αi + τt + νit

– τi: time-fixed effect (pulled from error term εit)

∗ Includes all differences over time that do not change across groups! (e.g. all States experience
recession in 2008, or federal law change)

∗ Does not include variables that are different across groups!

∗ Estimates a different intercept for each time period

– Least Squares Dummy Variable (LSDV) Approach: can estimate via creating & including a
dummy variable for each group and each time period (minus 1 for each to avoid dummy variable
trap)

Ŷit = β0 + β1Xit +

N−1∑
i=1

αiDi +

T−1∑
t=1

τiDt

where αi and τt are coefficients, Di is a dummy variable for group i, and Dt is a dummy variable
for time period t, for example:

Ŷit = β0 + β1Xit + β2Alabamai + β3Alaskai + ...+ β512000t + β522001t + ...

7



• Difference-in-Differences model

Ŷit = β0 + β1Treatedi + β2Afterit + β3(Treatedi ×Aftert) + εit

– Where:

∗ Treatedi = 1 if unit i is in treatment group

∗ Afterit = 1 if observation it is after treatment period

Control Treatment Group Diff. (∆Yi)

Before β0 β0 + β1 β1
After β0 + β2 β0 + β1 + β2 + β3 β1 + β3

Time Diff. (∆Yt) β2 β2 + β3 β3

Diff-in-diff (∆∆Y )

time

Y

C1

C2

T1

T2

β̂2

β̂0 + β̂1

β̂2

β̂3

tBefore tAfter

β̂1

β̂0

∆∆Y = (Treatedafter − Treatedbefore)− (Controlafter − Controlbefore)

– OLS Coefficients:

∗ β̂0: value of Y for control before treatment

∗ β̂1: difference between treatment and control (before treatment)

∗ β̂2: time difference between before and after treatment

∗ β̂3: difference-in-difference: effect of treatment

– Values of Y for different groups:

∗ Y for Control Group Before: β̂0
∗ Y for Control Group After: β̂0 + β̂2
∗ Y for Treatment Group Before: β̂0 + β̂1
∗ Y for Treatment Group After: β̂0 + β̂1 + β̂2 + β̂3
∗ Treatment Effect: β̂3

– Key assumption about counterfactual : if not for treatment, the treated group would change the
same over time as the control group (parallel time trends, magenta dotted line)

– Can generalize the model with two way fixed effects:

Ŷit = αi + τt + β3(Treatedi ×Aftert) +Xit + εit

∗ αi: group-fixed effects, where some groups receive treatment and others do not

∗ τt: time-fixed effects, where some periods are before treatment and others are after

∗ Xit: other control variables

∗ This allows for multiple treatments to happen at different times!
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