Multivariate Regression Concepts

Ryan Safner
ECON 480 - Econometrics - Final Exam

Multivariate Regression

- Omitted Variable Bias
- A variable Z causes omitted variable bias if:

1. $\operatorname{corr}(X, Z) \neq 0, X$ and Z are correlated
2. $\operatorname{corr}(Z, Y) \neq 0, Z$ is in the error term that explains Y

- Omitted variable bias can be avoided by including Z in the regression (as X_{2})
- Multivariate Regression Model

$$
\widehat{Y_{i}}=\hat{\beta_{0}}+\hat{\beta_{1}} X_{1 i}+\hat{\beta_{2}} X_{2 i}+\hat{\epsilon_{i}}
$$

- $\hat{\beta}_{0}$: predicted value of \hat{Y}_{i} when $X_{1 i}=0 ; X_{2 i}=0$
- $\hat{\beta}_{1}=\frac{\Delta Y_{i}}{\Delta X_{1 i}}$, marginal effect of $X_{1 i}$ on Y_{i}, holding $X_{2 i}$ constant
$-\hat{\beta}_{2}=\frac{\Delta Y_{i}}{\Delta X_{2 i}}$, marginal effect of $X_{2 i}$ on Y_{i}, holding $X_{1 i}$ constant
- Measuring Omitted Variable Bias
- Suppose we omit $X_{2 i}$ and run an Omitted Regression

$$
Y_{i}=\alpha_{0}+\alpha_{1} X_{1 i}+\nu_{i}
$$

- If we run an Auxiliary Regression of $X_{2 i}$ on $X_{1 i}$:

$$
X_{2 i}=\delta_{0}+\delta_{1} X_{1 i}+\tau_{i}
$$

* Size and significance of δ_{1} measures relationship between $X_{1 i}$ and $X_{2 i}$

$$
\alpha_{1}=\beta_{1}+\beta_{2} \delta_{1}
$$

- Biased estimate α_{1} in Omitted Regression picks up:
* True effect of $X_{1 i}$ on $Y_{i}\left(\beta_{1}\right)$
* Effect of $X_{2 i}$ on $Y_{i}\left(\beta_{2}\right)$ as pulled through the relationship between $X_{1 i}$ and $X_{2 i}\left(\delta_{1}\right)$
- Conditions for Z being an omitted variable
* Z_{i} must be a determinant of $Y_{i}\left(\beta_{2} \neq 0\right)$
* Z_{i} is correlated with $X_{1 i}\left(\delta_{1} \neq 0\right)$
- Variance of OLS estimators $\hat{\beta}_{j}$

$$
\operatorname{var}\left[\hat{\beta}_{j}\right]=\frac{1}{\left(1-R_{j}^{2}\right)} * \frac{\hat{\sigma}^{2}}{n \times \operatorname{var}\left[X_{j}\right]}
$$

and Standard error

$$
\text { s.e. }\left[\hat{\beta}_{j}\right]=\sqrt{\operatorname{var}\left[\hat{\beta}_{j}\right]}
$$

$\hat{\beta}_{j}$ is a random variable, so it has its own sampling distribution with mean $E\left[\hat{\beta}_{j}\right]$ and standard error se[$\left.\hat{\beta}_{j}\right]$

- Affected by 4 major factors:

1. Model fit, where $\mathrm{SER}=\hat{\sigma}$
2. Sample size n
3. Variation in X_{j}
4. Variance Inflation Factor (VIF) $\frac{1}{1-R_{j}^{2}}$

- Independent variables are multicollinear if they are correlated

$$
\operatorname{corr}\left(X_{j}, X_{l}\right) \neq 0 \text { for } j \neq l
$$

- Does not bias estimators, but increases their variance \& standard errors
- R_{j}^{2} is the R^{2} from an auxiliary regression of X_{j} on all other regressors
- VIF quantifies how by many times the variance of $\hat{\beta}_{j}$ increased because of multicollinearity *VIF $>10\left(\right.$ or $\left.\frac{1}{V I F}>0.10\right)$ is bad
- Perfect multicollinearity when a regressor is an exact linear function of (an)other regressor(s) - cannot run a regression, a logical impossibility

$$
\left|\operatorname{corr}\left(X_{1}, X_{2}\right)\right|=1
$$

Dummy Variables

- Dummy variable

$$
D_{i}= \begin{cases}1 & \text { if } i \text { meets condition } \\ 0 & \text { if } i \text { does not meet condition }\end{cases}
$$

- Dummy variables measure group means

$$
\hat{Y}_{i}=\hat{\beta_{0}}+\hat{\beta_{1}} D_{i}
$$

- When $D_{i}=0$ (Control group):
* $\hat{Y}_{i}=\hat{\beta_{0}}$
* $E\left[Y \mid D_{i}=0\right]=\hat{\beta_{0}} \Longleftrightarrow$ the mean of Y when $D_{i}=0$
- When $D_{i}=1$ (Treatment group):
* $\hat{Y}_{i}=\hat{\beta_{0}}+\hat{\beta_{1}} D_{i}$
$* E\left[Y \mid D_{i}=1\right]=\hat{\beta_{0}}+\hat{\beta_{1}} \Longleftrightarrow$ the mean of Y when $D_{i}=1$
- Difference in group means:

$$
\begin{aligned}
& =E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right] \\
& =\left(\hat{\beta_{0}}+\hat{\beta_{1}}\right)-\left(\hat{\beta_{0}}\right) \\
& =\hat{\beta_{1}}
\end{aligned}
$$

- Transforming categorical variables into dummies
- A categorical variable (e.g. region, class standing, etc) can be added to a regression by making each category option a dummy variable and including them all (minus one)

$$
Y_{i}=\beta_{0}+\beta_{2} D_{1}+\beta_{2} D_{2}+\beta_{3} D_{3}
$$

where observations can fall into category $1,2,3$, or 4

- Including all category option dummies into a regression yields the dummy variable trap, where all dummies are perfectly multicollinear
- Must drop one category dummy, the "reference group"
- Coefficients on dummy variables are the difference between that category and the reference category:
* $\beta_{0}=Y$ for category 4 (omitted)
* $\beta_{1}=$ difference between category 1 and category 4 (omitted)
* $\beta_{2}=$ difference between category 2 and category 4 (omitted)
* $\beta_{3}=$ difference between category 3 and category 4 (omitted)
- Interaction terms measure if there is an additional effect of one variable on the value of another, 3 combinations:

1. Between a dummy and a continuous variable

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3} \mathbf{X}_{\mathbf{i}} \times \mathbf{D}_{\mathbf{i}}
$$

- Coefficients:
* $\beta_{0}: Y_{i}$ for $X_{i}=0$ and $D_{i}=0$
* β_{1} : Effect of $X_{i} \rightarrow Y_{i}$ for $D_{i}=0$
* β_{2} : Effect on Y_{i} of difference between $D_{i}=0$ and $D_{i}=1$
* β_{3} : Effect of difference of $X_{i} \rightarrow Y_{i}$ between $D_{i}=0$ and $D_{i}=1$
- Easier to see as two different regression lines:
* When $D_{i}=0$ (Control group):

$$
\hat{Y}_{i}=\hat{\beta_{0}}+\hat{\beta}_{1} X_{i}
$$

* When $D_{i}=1$ (Treatment group):

$$
\hat{Y}_{i}=\left(\hat{\beta_{0}}+\hat{\beta_{2}}\right)+\left(\hat{\beta_{1}}+\hat{\beta_{3}}\right) X_{i}
$$

* Two regression lines may have (same/different) intercepts and (same/different) intercepts, test significance of:
- β_{2} : difference in intercepts
- β_{3} : difference in slopes

2. Between two dummy variables

$$
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+\beta_{3} \mathbf{D}_{1 \mathbf{i}} \times \mathbf{D}_{\mathbf{2 i}}
$$

- Coefficients:
* β_{0} : value of Y for $D_{1 i}=0$ and $D_{2 i}=0$
* β_{1} : effect on Y of $D_{1 i}=0 \rightarrow 1$ when $D_{2 i}=0$
* β_{2} : effect on Y of $D_{2 i}=0 \rightarrow 1$ when $D_{1 i}=0$
* β_{3} : increment to effect on Y of $D_{1 i}=0 \rightarrow 1$ when $D_{2 i}=1$ vs. when $D_{2 i}=0$
- Compare difference in group means:
* $D_{1 i}=0, D_{2 i}=0: \widehat{Y}_{i}=\hat{\beta_{0}}$
* $D_{1 i}=0, D_{2 i}=1: \widehat{Y}_{i}=\hat{\beta_{0}}+\hat{\beta}_{2}$
* $D_{1 i}=1, D_{2 i}=0: \widehat{Y}_{i}=\hat{\beta_{0}}+\hat{\beta_{1}}$
* $D_{1 i}=1, D_{2 i}=1: \widehat{Y}_{i}=\hat{\beta_{0}}+\hat{\beta_{1}}+\hat{\beta_{2}}+\hat{\beta_{3}}$

3. Between two continuous variables

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3}\left(\mathbf{X}_{1 \mathbf{i}} \times \mathbf{X}_{\mathbf{2} \mathbf{i}}\right)
$$

- Marginal effects:
* $\frac{\Delta Y_{i}}{\Delta X_{1 i}}=\beta_{1}+\beta_{3} X_{2 i}$ - marginal effect of $X_{1 i} \rightarrow Y_{i}$ depends on $X_{2 i}$
* $\frac{\Delta Y_{i}}{\Delta X_{2 i}}=\beta_{2}+\beta_{3} X_{1 i}$ - marginal effect of $X_{2 i} \rightarrow Y_{i}$ depends on $X_{1 i}$

Transforming Variables

- Polynomial functions

$$
\hat{Y}_{i}=\hat{\beta_{0}}+\hat{\beta_{1}} X_{i}+\hat{\beta_{2}} X_{i}^{2}+\ldots+\hat{\beta}_{r} X_{i}^{r}+\epsilon_{i}
$$

where r is highest power X_{i} is raised to, a function with $r-1$ bends

- Quadratic model

$$
\hat{Y}_{i}=\hat{\beta_{0}}+\hat{\beta_{1}} X_{i}+\hat{\beta_{2}} X_{i}^{2}+\epsilon_{i}
$$

* Marginal effect of $X_{i} \rightarrow Y_{i}$:

$$
\frac{d Y_{i}}{d X_{i}}=\hat{\beta_{1}}+2 \hat{\beta_{2}} X_{i}
$$

* Value of X_{i} where Y_{i} is minimized/maximized:

$$
X_{i}^{*}=-\frac{1}{2} \frac{\beta_{1}}{\beta_{2}}
$$

- To determine if a higher-powered term is necessary, test significance of its associated coefficient (e.g. β_{2} for quadratic model above)
- To determine if a model is nonlinear, run F-test of all higher-powered terms
- Logarithmic functions (ln)
- Natural Logs (ln) are used to talk about percentage changes, 3 types of models:

1. Linear-log model:

$$
Y=\beta_{0}+\beta_{1} \ln (\mathbf{X})
$$

* β_{1} : A 1% change in $X \rightarrow \frac{\beta_{1}}{100}$ unit change in Y

2. Log-linear model:

$$
\ln (\mathbf{Y})=\beta_{0}+\beta_{1} X
$$

* β_{1} : A 1 unit change in $X \rightarrow 100 \times \beta_{1} \%$ change in Y

3. Log-log model:

$$
\ln (\mathbf{Y})=\beta_{0}+\beta_{1} \ln (X)
$$

* β_{1} : A 1% change in $X \rightarrow \beta_{1} \%$ change in Y (elasticity between X and Y)
- Standardized coefficients

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}
$$

- To compare the magnitude of marginal effects (e.g. is $\beta_{1}>\beta_{2}$) across variables of different units, standardize the variables by taking the Z-score of all observations

$$
\text { Variable }_{s t d}=\frac{\text { Variable }-\overline{\text { Variable }}}{\operatorname{sd}(\text { Variable })}
$$

- Coefficients measure the $\#$ of standard deviations change of Y a 1 std. dev. change in X causes
- Joint Hypothesis Testing
- Joint hypothesis tests against the null hypothesis of a value for multiple parameters, e.g.

$$
\begin{aligned}
& H_{0}: \beta_{1}=0, \beta_{2}=0 \\
& H_{1}: H_{0} \text { is false }
\end{aligned}
$$

- Three common tests

1. $H_{0}: \beta_{1}=\beta_{2}=0$, testing if multiple variables do not affect Y
2. $H_{0}: \beta_{1}=\beta_{2}$, testing if multiple variables have the same effect (must be same units)
3. H_{0} : all β 's $=0$, the model overall explains no variation in Y

- In general, with q restrictions:

$$
H_{0}: \beta_{j}=\beta_{j, 0}, \beta_{k}=\beta_{k, 0}, \ldots \text { for } q \text { restrictions }
$$

- Use the F-statistic, (simplified homoskedastic formula below)

$$
F_{q, n-k-1}=\frac{\left(\frac{\left(R_{u}^{2}-R_{r}^{2}\right)}{q}\right)}{\left(\frac{\left(1-R_{u}^{2}\right)}{(n-k-1)}\right)}
$$

- Compares the R^{2} 's of two models:
* Unrestricted model: regression with all coefficients
* Restricted model: regression under the null hypothesis (e.g. where $\beta_{1}=0, \beta_{2}=0$)
- F tests if the increase in R^{2} from including the suspect variables (Restricted \rightarrow Unrestricted) increases by a statistically significant amount

Panel Data

- Panel data tracks the same individuals (a cross-section) over time (time-series)

$$
\widehat{Y_{i t}}=\beta_{0}+\beta_{1} X_{i t}+\epsilon_{i t}
$$

with N number of i groups and T number of t time periods

- A pooled model simply runs this as normal OLS regression
- Biased: ignores factors correlated with X in ϵ
- Systematic differences across groups i that may be stable over time
- Systematic differences across time t that may be stable across groups
- (One-Way) Fixed effects model

$$
\widehat{Y_{i t}}=\beta_{0}+\beta_{1} X_{i t}+\alpha_{\mathbf{i}}+\nu_{i t}
$$

$-\alpha_{i}$: group-fixed effect (pulled from error term $\epsilon_{i t}$)

* Includes all differences across groups that do not change over time! (e.g. geography, culture, etc. of Maryland vs. Alaska)
* Does not include variables that change over time!
* Estimates a different intercept for each group
- Least Squares Dummy Variable (LSDV) Approach: can estimate via creating \& including a dummy variable for each group (minus 1 to avoid dummy variable trap)

$$
\widehat{Y_{i t}}=\beta_{0}+\beta_{1} X_{i t}+\sum_{i=1}^{N-1} \alpha_{i} D_{i}
$$

where α_{i} is a coefficient and D_{i} is a dummy variable for group i, for example:

$$
\widehat{Y_{i t}}=\beta_{0}+\beta_{1} X_{i t}+\beta_{2} \text { Alabama }_{i}+\beta_{3} \text { Alaska }_{i}+\ldots
$$

- Two-Way Fixed effects model

$$
\widehat{Y_{i t}}=\beta_{0}+\beta_{1} X_{i t}+\alpha_{\mathbf{i}}+\tau_{\mathbf{t}}+\nu_{i t}
$$

- τ_{i} : time-fixed effect (pulled from error term $\epsilon_{i t}$)
* Includes all differences over time that do not change across groups! (e.g. all States experience recession in 2008, or federal law change)
* Does not include variables that are different across groups!
* Estimates a different intercept for each time period
- Least Squares Dummy Variable (LSDV) Approach: can estimate via creating \& including a dummy variable for each group and each time period (minus 1 for each to avoid dummy variable trap)

$$
\widehat{Y_{i t}}=\beta_{0}+\beta_{1} X_{i t}+\sum_{i=1}^{N-1} \alpha_{i} D_{i}+\sum_{t=1}^{T-1} \tau_{i} D_{t}
$$

where α_{i} and τ_{t} are coefficients, D_{i} is a dummy variable for group i, and D_{t} is a dummy variable for time period t, for example:

$$
\widehat{Y_{i t}}=\beta_{0}+\beta_{1} X_{i t}+\beta_{2} \text { Alabama }_{i}+\beta_{3} \text { Alaska }_{i}+\ldots+\beta_{51} 2000_{t}+\beta_{52} 2001_{t}+\ldots
$$

- Difference-in-Differences model

$$
\widehat{Y_{i t}}=\beta_{0}+\beta_{1} \operatorname{Treated}_{i}+\beta_{2} \operatorname{After}_{i t}+\beta_{3}\left(\operatorname{Treated}_{i} \times \operatorname{After}_{t}\right)+\epsilon_{i t}
$$

- Where:
* Treated $_{i}=1$ if unit i is in treatment group
* $\operatorname{After}_{i t}=1$ if observation $i t$ is after treatment period

	Control	Treatment	Group Diff. $\left(\Delta Y_{i}\right)$
Before	β_{0}	$\beta_{0}+\beta_{1}$	β_{1}
After	$\beta_{0}+\beta_{2}$	$\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3}$	$\beta_{1}+\beta_{3}$
Time Diff. $\left(\Delta Y_{t}\right)$	β_{2}	$\beta_{2}+\beta_{3}$	β_{3}
			Diff-in-diff $(\Delta \Delta Y)$

$$
\Delta \Delta Y=\left(\text { Treated }_{a f t e r}-\text { Treated }_{\text {before }}\right)-\left(\text { Control }_{\text {after }}-\text { Control }_{\text {before }}\right)
$$

- OLS Coefficients:
* $\hat{\beta_{0}}$: value of Y for control before treatment
* $\hat{\beta}_{1}$: difference between treatment and control (before treatment)
* $\hat{\beta}_{2}$: time difference between before and after treatment
* $\hat{\beta}_{3}$: difference-in-difference: effect of treatment
- Values of Y for different groups:
* Y for Control Group Before: $\hat{\beta_{0}}$
* Y for Control Group After: $\hat{\beta_{0}}+\hat{\beta_{2}}$
* Y for Treatment Group Before: $\hat{\beta_{0}}+\hat{\beta_{1}}$
* Y for Treatment Group After: $\hat{\beta_{0}}+\hat{\beta_{1}}+\hat{\beta_{2}}+\hat{\beta_{3}}$
* Treatment Effect: $\hat{\beta_{3}}$
- Key assumption about counterfactual: if not for treatment, the treated group would change the same over time as the control group (parallel time trends, magenta dotted line)
- Can generalize the model with two way fixed effects:

$$
\widehat{Y_{i t}}=\alpha_{i}+\tau_{t}+\beta_{3}\left(\operatorname{Treated}_{i} \times \operatorname{After}_{t}\right)+X_{i t}+\epsilon_{i t}
$$

* α_{i} : group-fixed effects, where some groups receive treatment and others do not
* τ_{t} : time-fixed effects, where some periods are before treatment and others are after
* $X_{i t}$: other control variables
* This allows for multiple treatments to happen at different times!

