4.3-Categorical Data ECON 480 • Econometrics • Fall 2022

Dr. Ryan Safner
Associate Professor of Economics
, safner@hood.edu
ryansafner/metricsF22
\#metricsF22.classes.ryansafner.com

Contents

Working with factor Variables in R
Regression with Dummy Variables
Recoding Dummy Variables
Categorical Variables (More than 2 Categories)
Interaction Effects
Interactions Between a Dummy and Continuous Variable
Interactions Two Dummy Variables
Interactions Between Two Continuous Variables

Categorical Variables

- Categorical variables place an individual into one of several possible categories
- e.g. sex, season, political party
- may be responses to survey questions
- can be quantitative (e.g. age, zip code)

Question

Do you invest in the stock market?
What kind of advertising do you use?
What is your class at school?
I would recommend this course to another student.

How satisfied are you with this product?

Categories or Responses

\qquad _No

Newspapers
_Internet Direct mailings
__Freshman
Sophomore Junior Senior _ Strongly Disagree __Slightly Disagree
__Slightly Agree __Strongly Agree
_ Very Unsatisfied __ Unsatisfied __ Satisfied _ Very Satisfied

- In R: character or factor type data
- factor \Longrightarrow specific possible categories

Working with factor Variables in R

Factors in R I

- factor is a special type of character object class that indicates membership in a category (called a level)
- Suppose I have data on students:

id <dbl> rank <chr>	grade $<\mathrm{dbl}$	
1	Freshman	76
2	Junior	82
3	Sophomore	73
4	Sophomore	95
5	Senior	74
5 rows		

- See that Rank is a character (<chr>) variable, just a string of text

Factors in R II

- We can make rank a factor variable, to indicate a student is a member of one of the possible categories: (freshman, sophomore, junior, senior)

```
students <- students %>%
    mutate(rank = as.factor(rank)) # overwrite and change class of Rank to factor
students %>% head(n = 5)
```

id rank
<dbl> <fct>
1 Freshman 76
2 Junior 82
3 Sophomore 73
4 Sophomore 95
5 Senior 74
5 rows

- See now it's a factor (<fct>)

Factors in R III

```# what are the categories? students %>% group_by(rank) %>% count()```	
rank	n
<fct>	<int>
Freshman	4
Junior	1
Senior	3
Sophomore	2
4 rows	
1 \# note the order is arbitra	

## Ordered Factors in R I

- If there is a rank order you wish to preserve, you can make an ordered (factor) variable
- list the levels from 1st to last

students <- students $\%>\%$mutate(rank $=$ ordered(rank, \# overwrite and change class of Rank to ordered\# next, specify the levels, in orderlevels $=c($ Freshman", "Sophomore", "Junior", "Senior")		
)		
${ }_{8}$ students 8>8 head ( $\mathrm{n}=5$ )		
id	rank	grade
<dbl>	<ord>	<dbl>
1	Freshman	76
2	Junior	82
3	Sophomore	73
4	Sophomore	95

5
Senior
74

## 5 rows

## Ordered Factors in R II



## Example Research Question with Categorical Data

## Example

How much higher wages, on average, do men earn compared to women?


## A Difference in Group Means

- Basic statistics: can test for statistically significant difference in group means with a ttest ${ }^{1}$, let:

- $Y_{M}$ : average earnings of a sample of $n _M$ men
- $\left[Y_{W}\right]\{$.pink: average earnings of a sample of $n_{M}$ women
- Difference in group averages: $d=\bar{Y}_{M}-\bar{Y}_{W}$
- The hypothesis test is:
- $H_{0}: d=0$
- $H_{1}: d \neq 0$


## Plotting factors in R

- Plotting wage vs. a factor variable, e.g. gender (which is either Male or Female) looks like this

- Effectively $R$ treats values of a factor variable as integers (e.g. "Female" $=0$, "Male" $=1$ )
- Let's make this more explicit by making a dummy variable to stand in for gender


## Regression with Dummy Variables

## Comparing Groups with Regression

- In a regression, we can easily compare across groups via a dummy variable ${ }^{1}$
- Dummy variable only $=0$ or $=1$, if a condition is TRUE vs. FALSE
- Signifies whether an observation belongs to a category or not

Example

$$
\widehat{\text { Wage }}_{i}=\hat{\beta_{0}}+\hat{\beta}_{1} \text { Female }_{i} \quad \text { where Female } i= \begin{cases}1 & \text { if individual } i \text { is Female } \\ 0 & \text { if individual } i \text { is Male }\end{cases}
$$

- Again, $\hat{\beta_{1}}$ makes less sense as the "slope" of a line in this context


## Comparing Groups in Regression: Scatterplot

```
Plot Code
```



- Hard to see relationships because of overplotting ...


## Comparing Groups in Regression: Scatterplot

```
Plot Code
```



- Tip: use geom_jitter() instead of geom_point () to randomly nudge points!
- Only used for plotting, does not affect actual data, regression, etc.


## Dummy Variables as Group Means

$$
\hat{Y}_{i}=\hat{\beta_{0}}+\hat{\beta}_{1} D_{i} \quad \text { where } D_{i}=\{0,1\}
$$

- When $D_{i}=0$ ("Control group"):
- $\hat{Y}_{i}=\hat{\beta_{0}}$
- $E\left[Y_{i} \mid D_{i}=0\right]=\hat{\beta_{0}} \Longleftrightarrow$ the mean of $Y$ when $D_{i}=0$
- When $D_{i}=1$ ("Treatment group"):
- $\hat{Y}_{i}=\hat{\beta_{0}}+\hat{\beta}_{1} D_{i}$
- $E\left[Y_{i} \mid D_{i}=1\right]=\hat{\beta_{0}}+\hat{\beta_{1}} \Longleftrightarrow$ the mean of $Y$ when $D_{i}=1$
- So the difference in group means:

$$
\begin{aligned}
& =E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right] \\
& =\left(\hat{\beta_{0}}+\hat{\beta_{1}}\right)-\left(\hat{\beta_{0}}\right) \\
& =\hat{\beta_{1}}
\end{aligned}
$$

## Dummy Variables as Group Means: Our Example

```
Example
```

$$
{\widehat{\text { Wage }_{i}}=\hat{\beta_{0}}+\hat{\beta}_{1} \text { Female }_{i}, ~}_{\text {and }}
$$

- Mean wage for men:

$$
E[\text { Wage } \mid \text { Female }=0]=\hat{\beta_{0}}
$$

- Mean wage for women:

$$
E[\text { Wage } \mid \text { Female }=1]=\hat{\beta_{0}}+\hat{\beta_{1}}
$$

- Difference in wage between men \& women:

$$
\hat{\beta}_{1}
$$

## Comparing Groups in Regression: Scatterplot



## The Data

	wage   <dbl>	gender   <fct>	educ   <int>	exper   <int>	tenure   <int>
1	3.10	Female	11	2	0
2	3.24	Female	12	22	2
3	3.00	Male	11	2	0
4	6.00	Male	8	44	28
5	5.30	Male	12	7	2
6	8.75	Male	16	9	8
7	11.25	Male	18	15	7
8	5.00	Female	12	5	3
9	3.60	Female	12	26	4
10	18.18	Male	17	22	21
1-10 of 526 rows \| 1-6 of 25 columns			Previous 12345653 Next		

## Conditional Group Means

```# Summarize for Men wages %>% filter(gender=="Male") %>% summarize(mean = mean(wage), sd = sd(wage))```	
	mean <dbl>
	7.099489
1 row 1-1 of 2 columns	


```# Summarize for Women wages %>% filter(gender=="Female") %>% summarize(mean = mean(wage), sd = sd(wage))```	
	mean   <dbl>
	4.587659
1 row \| 1-1 of 2 columns	

## Visualize Differences

## Conditional Wage Distribution by Gender



GenderWomen Men

## The Regression (factor variables)

1	reg $<-\operatorname{lm}($ wage $\sim$ gender, data $=$ wages $)$
2	summary $($ reg $)$

$\square$
library(broom)
summary(reg)

## term

Call:
$\operatorname{lm}($ formula $=$ wage $\sim$ gender, data $=$ wages $)$

(Intercept)
genderMale
2 rows | 1-1 of 5 columns

Residual standard error: 3.476 on 524 degrees of freedom Multiple R-squared: 0.1157, Adjusted R-squared: 0.114 F-statistic: 68.54 on 1 and 524 DF, p-value: $1.042 \mathrm{e}-15$

- Putting the factor variable gender in, R automatically chooses a value to set as TRUE, in this case Male = TRUE
- genderMALE $=1$ for Male, $=0$ for Female
- According to the data, men earn, on average, \$2.51 more than women


## The Regression: Dummy Variables

- Let's explicitly make gender into a dummy variable for female:


[^0]
## The Regression (Dummy variables)

1	female_reg <- lm(wage $\sim$ female, data $=$ wages $)$
2	summary (female_reg)

## Call:

$\operatorname{lm}($ formula $=$ wage $\sim$ female, data $=$ wages $)$


Coefficients:
Estimate Std. Error $t$ value $\operatorname{Pr}(>|t|)$
(Intercept) $7.0995 \quad 0.210033 .806<2 e-16$ ***
female -2.5118 $0.3034-8.2791 .04 \mathrm{e}-15$ ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.476 on 524 degrees of freedom Multiple R-squared: 0.1157, Adjusted R-squared: 0.114 F-statistic: 68.54 on 1 and $524 \mathrm{DF}, \mathrm{p}$-value: $1.042 \mathrm{e}-15$

| 1 <br> library (broom) <br> 2 tidy (female_reg) |
| :--- | :--- |
| term |
| <chr> |
| (Intercept) |
| female |
| 2 rows \| 1-1 of 5 columns |

## Dummy Regression vs. Group Means

From tabulation of group means

Gender	Avg. Wage	Std. Dev.	$n$
Female	4.59	2.33	252
Male	7.10	4.16	274
Difference	2.51	0.30	-

From $t$-test of difference in group means
term
<chr>
(Intercept)
female
2 rows | 1-1 of 5 columns

$$
\widehat{\text { Wages }}_{i}=7.10-2.51 \mathrm{Female}_{i}
$$

## Recoding Dummy Variables

## Recoding Dummy Variables

## Example

Suppose instead of female we had used:

$$
\widehat{W a g e}_{i}=\hat{\beta_{0}}+\hat{\beta}_{1} \text { Male }_{i} \quad \text { where } \text { Male }_{i}= \begin{cases}1 & \text { if person } i \text { is Male } \\ 0 & \text { if person } i \text { is Female }\end{cases}
$$

## Recoding Dummies in the Data

```
wages <- wages %>%
 mutate(male = ifelse(female == 0, # condition: is female equal to 0?
 yes = 1, # if true: code as "1"
 no = 0)) # if false: code as "0"
 # verify it worked
wages %>%
 select(wage, female, male) %>%
 head(n = 5)
```

	wage   $<\mathrm{dbl}>$	female   <dbl>	male   $<\mathrm{dbl}>$
1	3.10	1	0
2	3.24	1	0
3	3.00	0	1
4	6.00	0	1
5	5.30	0	1

## 5 rows

## Scatterplot with Male




## Dummy Variables as Group Means: With Male

```
Example
```

$$
\widehat{\text { Wage }}_{i}=\hat{\beta_{0}}+\hat{\beta}_{1} \text { Male }_{i}
$$

- Mean wage for men:

$$
E[\text { Wage } \mid \text { Male }=1]=\hat{\beta_{0}}+\hat{\beta_{1}}
$$

- Mean wage for women:

$$
E[\text { Wage } \mid \text { Male }=0]=\hat{\beta_{0}}
$$

- Difference in wage between men \& women:

$$
\hat{\beta_{1}}
$$

## Scatterplot \& Regression Line with Male




## The Regression with Male

1 male_reg <- lm(wage ~ male, data = wages)
2 summary(male_reg)


```
1 library(broom)
2 tidy(male_reg)
```


## term

<chr>
(Intercept)
male
2 rows | 1-1 of 5 columns

## The Dummy Regression: Male or Female

	Wage	Wage
Constant	$7.10^{* * *}$	$4.59^{* * *}$
	$(0.21)$	$(0.22)$
female	$-2.51^{* * *}$	
	$(0.30)$	
male		$2.51^{* * *}$
		$(0.30)$
n	526	526
Adj. R	0.11	0.11
SER	3.47	3.47
${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$		

- Note it doesn't matter if we use male or female, difference is always $\$ 2.51$
- Compare the constant (average for the $D=0$ group)
- Should you use male AND female in a regression? We'll come to that...


## Categorical Variables (More than 2 Categories)

## Categorical Variables with More than 2 Categories

- A categorical variable expresses membership in a category, where there is no ranking or hierarchy of the categories
- We've looked at categorical variables with 2 categories only
- e.g. Male/Female, Spring/Summer/Fall/Winter, Democratic/Republican/Independent
- Might be an ordinal variable expresses rank or an ordering of data, but not necessarily their relative magnitude
- e.g. Order of finalists in a competition (1st, 2nd, 3rd)
- e.g. Highest education attained (1=elementary school, 2=high school, 3=bachelor's degree, 4=graduate degree)
- in R, an ordered factor


## Using Categorical Variables in Regression I

## Example

How do wages vary by region of the country? Let Region $_{i}=\{$ Northeast, Midwest, South, West $\}$

- Can we run the following regression?

$$
\widehat{\text { Wages }}_{i}=\hat{\beta_{0}}+\hat{\beta}_{1} \text { Region }_{i}
$$

## Using Categorical Variables in Regression II

## Example

How do wages vary by region of the country? Let Region $_{i}=\{$ Northeast, Midwest, South, West $\}$

- Code region numerically:

$$
\text { Region }_{i}= \begin{cases}1 & \text { if } i \text { is in Northeast } \\ 2 & \text { if } i \text { is in Midwest } \\ 3 & \text { if } i \text { is in South } \\ 4 & \text { if } i \text { is in West }\end{cases}
$$

- Can we run the following regression?

$$
\widehat{\text { Wages }}_{i}=\hat{\beta_{0}}+\hat{\beta}_{1} \text { Region }_{i}
$$

## Using Categorical Variables in Regression III

## Example

How do wages vary by region of the country? Let Region $_{i}=\{$ Northeast, Midwest, South, West $\}$

- Create a dummy variable for each region:
- Northeast $_{i}=1$ if $i$ is in Northeast, otherwise $=0$
- Midwest $_{i}=1$ if $i$ is in Midwest, otherwise $=0$
- South $_{i}=1$ if $i$ is in South, otherwise $=0$
- West $_{i}=1$ if $i$ is in West, otherwise $=0$
- Can we run the following regression?


## The Dummy Variable Trap

Example

- If we include all possible categories, they are perfectly multicollinear, an exact linear function of one another:

$$
\text { Northeast }_{i}+\text { Midwest }_{i}+\text { South }_{i}+\text { West }_{i}=1 \quad \forall i
$$

- This is known as the dummy variable trap, a common source of perfect multicollinearity


## The Reference Category

- To avoid the dummy variable trap, always omit one category from the regression, known as the "reference category"
- It does not matter which category we omit!
- Coefficients on each dummy variable measure the difference between the reference category and each category dummy


## The Reference Category: Example

Example

$$
{\widehat{\text { Wages }_{i}}=\hat{\beta_{0}}+\hat{\beta}_{1} \text { Northeast }_{i}+\hat{\beta}_{2} \text { Midwest }_{i}+\hat{\beta}_{3} \text { South }_{i}:=: ~}_{\text {and }}
$$

- West $t_{i}$ is omitted (arbitrarily chosen)
- $\hat{\beta_{0}}$ : average wage for $i$ in the West
- $\hat{\beta}_{1}$ : difference between West and Northeast
- $\hat{\beta_{2}}$ : difference between West and Midwest
- $\hat{\beta_{3}}$ : difference between West and South


## Regression in R with Categorical Variable

1 lm(wage ~region, data = wages) \%>\% summary()

lm(formula $=$ wage $\sim$ region, data $=$ wages)						
Residuals:						
Min 1Q M	Median	30	Max			
-6.083-2.387-	-1.097	1.157	18.610			
Coefficients:						
	Estim	te Std	Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)			0.3195	17.871	$<2 e-16$	***
regionNortheast	st 0.6	593	0.4651	1.418	0.1569	
regionSouth	-0.	336	0.4173	-0.775	0.4385	
regionWest	0.9	29	0.5035	1.793	0.0735	-

## Regression in R with Dummies (\& Dummy Variable Trap)

1 lm(wage ~ northeast + midwest + south + west, data = wages) \%>\% summary()

```
Call:
lm(formula = wage ~ northeast + midwest + south + west, data = wages)
Residuals:
\begin{tabular}{rrrrr}
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-6.083 & -2.387 & -1.097 & 1.157 & 18.610
\end{tabular}
Coefficients: (1 not defined because of singularities)
 Estimate Std. Error t value Pr(>|t|)
(Intercept) \(6.6134 \quad 0.389116 .995<2 \mathrm{e}-16\) ***
northeast -0.2436 0.5154 -0.473 0.63664
midwest -0.9029 0.5035 -1.793 0.07352
south -1.2265 0.4728 -2.594 0.00974 **
```

- R automatically drops one category to avoid perfect multicollinearity


## Using Different Reference Categories in $\mathbf{R}$

	Wage	Wage	Wage	Wage
Constant	$6.37^{* * *}$	$5.71^{* * *}$	$5.39^{* * *}$	$6.61^{* * *}$
	$(0.34)$	$(0.32)$	$(0.27)$	$(0.39)$
northcen	-0.66		0.32	$-0.90^{*}$
	$(0.47)$		$(0.42)$	$(0.50)$
south	$-0.98^{* *}$	-0.32		$-1.23^{* * *}$
	$(0.43)$	$(0.42)$		$(0.47)$
west	0.24	$0.90^{*}$	$1.23^{* * *}$	
	$(0.52)$	$(0.50)$	$(0.47)$	
northeast		0.66	$0.98^{* *}$	-0.24
		$(0.47)$	$(0.43)$	$(0.52)$
n	526	526	526	526
$\mathrm{R}^{2}$	0.02	0.02	0.02	0.02
Adj. R	0.01	0.01	0.01	0.01
SER	3.66	3.66	3.66	3.66
${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$				

- Constant is alsways average wage for reference (omitted) region
- Compare coefficients between Midwest in (1) and Northeast in (2)...
- Compare coefficients between West in (3) and South in (4)...
- Does not matter which region we omit!
- Same $R^{2}$, SER, coefficients give same results


## Dummy Dependent (Y) Variables

- In many contexts, we will want to have our dependent $(Y)$ variable be a dummy variable


## Example

$$
\widehat{\operatorname{Admitte}}_{i}=\hat{\beta_{0}}+\widehat{\beta_{1}} G P A_{i} \quad \text { where Admitted }{ }_{i}= \begin{cases}1 & \text { if } i \text { is Admitted } \\ 0 & \text { if } i \text { is Not Admitted }\end{cases}
$$

- A model where $Y$ is a dummy is called a linear probability model, as it measures the probability of $Y$ occurring given the $X$ 's, i.e. $P\left(Y_{i}=1 \mid X_{1}, \cdots, X_{k}\right)$
- e.g. the probability person $i$ is Admitted to a program with a given GPA
- Special models to properly interpret and extend this (logistic "logit", probit, etc)
- Feel free to write papers with dummy $Y$ variables!


## Interaction Effects

## Sliders and Switches



- Marginal effect of dummy variable: effect on $Y$ of going from 0 to 1
- Marginal effect of continuous variable: effect on $Y$ of a 1 unit change in $X$


## Interaction Effects

- Sometimes one $X$ variable might interact with another in determining $Y$


## Example

Consider the gender pay gap again.

- Gender affects wages
- Experience affects wages
- Does experience affect wages differently by gender?
- i.e. is there an interaction effect between gender and experience?
- Note this is NOT the same as just asking: "dlo men earn more than women with the same amount of experience?"


## Three Types of Interactions

- Depending on the types of variables, there are 3 possible types of interaction effects
- We will look at each in turn

1. Interaction between a dummy and a continuous variable:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3}\left(X_{i} \times D_{i}\right)
$$

2. Interaction between a two dummy variables:

$$
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+\beta_{3}\left(D_{1 i} \times D_{2 i}\right)
$$

3. Interaction between a two continuous variables:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} \mathcal{X C O N}_{2}+\underset{\substack{\text { ECOnometrics }}}{ }+\beta_{3}\left(X_{1} \times X_{i}\right)
$$

## Interactions Between a Dummy and Continuous Variable

## Interactions: A Dummy \& Continuous Variable



Dummy
Variable


Continuous
Variable

- Does the marginal effect of the continuous variable on $Y$ change depending on whether the dummy is "on" or "off"?


## Interactions: A Dummy \& Continuous Variable I

- We can model an interaction by introducing a variable that is an .hi[interaction term] capturing the interaction between two variables:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3}\left(X_{i} \times D_{i}\right) \quad \text { where } D_{i}=\{0,1\}
$$

- $\beta_{3}$ estimates the interaction effect between $X_{i}$ and $D_{i}$ on $Y_{i}$
-What do the different coefficients $(\beta)$ 's tell us?
- Again, think logically by examining each group ( $D_{i}=0$ or $D_{i}=1$ )


## Dummy-Continuous Interaction Effects as Two Regressions I

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3} X_{i} \times D_{i}
$$

- When $D_{i}=0$ ("Control group"):

$$
\begin{aligned}
& \hat{Y_{i}}=\hat{\beta_{0}}+\hat{\beta_{1}} X_{i}+\hat{\beta_{2}}(0)+\hat{\beta_{3}} X_{i} \times(0) \\
& \hat{Y}_{i}=\hat{\beta_{0}}+\hat{\beta_{1}} X_{i}
\end{aligned}
$$

- When $D_{i}=1$ ("Treatment group"):

$$
\begin{aligned}
& \hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}+\hat{\beta}_{2}(1)+\hat{\beta_{3}} X_{i} \times(1) \\
& \hat{Y}_{i}=\left(\hat{\beta_{0}}+\hat{\beta_{2}}\right)+\left(\hat{\beta_{1}}+\hat{\beta_{3}}\right) X_{i}
\end{aligned}
$$

- So what we really have is two regression lines!


## Dummy-Continuous Interaction Effects as Two Regressions

II


- $D_{i}=0$ group:

$$
Y_{i}=\hat{\beta_{0}}+\hat{\beta_{1}} X_{i}
$$

- $D_{i}=1$ group:

$$
Y_{i}=\left(\hat{\beta_{0}}+\hat{\beta_{2}}\right)+\left(\hat{\beta_{1}}+\hat{\beta_{3}}\right) X_{i}
$$

## Interpretting Coefficients I

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3}\left(X_{i} \times D_{i}\right)
$$

- To interpret the coefficients, compare cases after changing $X$ by $\Delta X$ :

$$
Y_{i}+\Delta Y_{i}=\beta_{0}+\beta_{1}\left(X_{i}+\Delta X_{i}\right) \beta_{2} D_{i}+\beta_{3}\left(\left(X_{i}+\Delta X_{i}\right) D_{i}\right)
$$

- Subtracting these two equations, the difference is:

$$
\begin{aligned}
\Delta Y_{i} & =\beta_{1} \Delta X_{i}+\beta_{3} D_{i} \Delta X_{i} \\
\frac{\Delta Y_{i}}{\Delta X_{i}} & =\beta_{1}+\beta_{3} D_{i}
\end{aligned}
$$

- The effect of $X \rightarrow Y$ depends on the value of $D_{i}$ !
- $\beta_{3}$ : increment to the effect of $X \rightarrow Y$ when $D_{i}=1$ (vs. $D_{i}=0$ )


## Interpretting Coefficients II

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3}\left(X_{i} \times D_{i}\right)
$$

- $\hat{\beta_{0}}: E\left[Y_{i}\right]$ for $X_{i}=0$ and $D_{i}=0$
- $\beta_{1}$ : Marginal effect of $X_{i} \rightarrow Y_{i}$ for $D_{i}=0$
- $\beta_{2}$ : Marginal effect on $Y_{i}$ of difference between $D_{i}=0$ and $D_{i}=1$
- $\beta_{3}$ : The difference of the marginal effect of $X_{i} \rightarrow Y_{i}$ between $D_{i}=0$ and $D_{i}=1$
- This is a bit awkward, easier to think about the two regression lines:


## Interpretting Coefficients III

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3}\left(X_{i} \times D_{i}\right)
$$

- For $D_{i}=0$ Group: $\hat{Y}_{i}=\hat{\beta_{0}}+\hat{\beta_{1}} X_{i}$
- Intercept: $\hat{\beta_{0}}$
- Slope: $\hat{\beta}_{1}$
- For $D_{i}=1$ Group: $\hat{Y}_{i}=\left(\hat{\beta}_{0}+\hat{\beta}_{2}\right)+\left(\hat{\beta}_{1}+\hat{\beta}_{3}\right) X_{i}$
- Intercept: $\hat{\beta_{0}}+\hat{\beta}_{2}$
- Slope: $\hat{\beta_{1}}+\hat{\beta_{3}}$
- $\hat{\beta}_{2}$ : difference in intercept between groups
- $\hat{\beta}_{3}$ : difference in slope between groups
- How can we determine if the two lines have the same slope and/or intercept?
- Same intercept? $t$-test $H_{0}: \beta_{2}=0$
- Same slope? $t$-test $H_{0}: \beta_{3}=0$


## Interactions in Our Example

## Example

- For menfemale $=0$ :

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}+\hat{\beta}_{1} \text { experience }_{i}
$$

- For women female $=1$ :

$$
\widehat{\text { wage }}_{i}=\underbrace{\left(\hat{\beta}_{0}+\hat{\beta}_{2}\right)}_{\text {intercept }}+\underbrace{\left(\hat{\beta}_{1}+\hat{\beta}_{3}\right)}_{\text {slope }} \text { experience }_{i}
$$

## Interactions in Our Example: Scatterplot

- Code



## Interactions in Our Example: Scatterplot

- Code



## Interactions in Our Example: Scatterplot

- Code



## Interactions in Our Example: Regression in R

- Syntax for adding an interaction term is easy ${ }^{1}$ in $\mathrm{R}: \mathrm{x} 1 * \times 2$
- Or could just do x1 * x2 (multiply)



## Interactions in Our Example: Regression

- Code

	Wage
Constant	$6.16^{* * *}$
	$(0.34)$
exper	$0.05^{* * *}$
	$(0.02)$
female	$-1.55^{* * *}$
	$(0.48)$
exper:female	$-0.06^{* *}$
	$(0.02)$
n	526
Adj. R ${ }^{2}$	0.13
SER	3.43
$* \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05, * * * \mathrm{p}<0.01$	

## Interactions in Our Example: Interpretting Coefficients

$$
{\left.\widehat{\text { wage }_{i}}=6.16+0.05 \text { experience }_{i}-1.55 \text { female }_{i}-0.06\left(\text { experience }_{i} \times \text { female }_{i}\right)\right) ~}_{\text {}}
$$

- $\hat{\beta_{0}}$ : Men with 0 years of experience earn 6.16
- $\hat{\beta_{1}}$ : For every additional year of experience, men earn $\$ 0.05$
- $\hat{\beta}_{2}$ : Women with 0 years of experience earn $\$ 1.55$ less than men
- $\hat{\beta}_{3}$ : Women earn $\$ 0.06$ less than men for every additional year of experience


## Interactions in Our Example: As Two Regressions I

$$
{\left.\widehat{\text { wage }_{i}}=6.16+0.05 \text { experience }_{i}-1.55 \text { female }_{i}-0.06\left(\text { experience }_{i} \times \text { female }_{i}\right)\right) ~}_{\text {a }}
$$

Regression for men female $=0$

$$
\widehat{\text { wage }}_{i}=6.16+0.05 \text { experience }_{i}
$$

- Men with 0 years of experience earn $\$ 6.16$ on average
- For every additional year of experience, men earn $\$ 0.05$ more on average


## Interactions in Our Example: As Two Regressions I

Regression for women female $=1$

$$
\begin{aligned}
{\overline{\text { wage }_{i}}}_{i} & =6.16+0.05 \text { experience }_{i}-1.55(1)-0.06 \text { experience }_{i} \times(1) \\
& =(6.16-1.55)+(0.05-0.06) \text { experience }_{i} \\
& =4.61-0.01 \text { experience }
\end{aligned}
$$

- Women with 0 years of experience earn $\$ 4.61$ on average
- For every additional year of experience, women earn \$0.01 less on average


## Interactions in Our Example: Hypothesis Testing

$$
{\widehat{\text { wage }_{i}}}_{i}=6.16+0.05 \text { experience }_{i}-1.55 \text { female }_{i}-0.06\left(\text { experience }_{i} \times \text { female }_{i}\right)
$$

term   <chr>	estimate   <dbl>	std.error   $<\mathrm{dbl}$	statistic   <dbl>
(Intercept)	6.15827549	0.34167408	18.023830
exper	0.05360476	0.01543716	3.472450
female	-1.54654677	0.48186030	-3.209534
exper:female	-0.05506989	0.02217496	-2.483427
4 rows \| 1-4 of 5 columns			

- Are intercepts of the 2 regressions different? $H_{0}: \beta_{2}=0$
- Difference between men vs. women for no experience?
- Is $\hat{\beta}_{2}$ significant?
- Yes (reject) $H_{0}$ : $p$-value $=0.00$
- Are slopes of the 2 regressions different? $H_{0}: \beta_{3}=0$
- Difference between men vs. women for marginal effect of experience?
- Is $\hat{\beta}_{3}$ significant?
- Yes (reject) $H_{0}: p$-value $=0.01$


## Interactions Between Two Dummy Variables

## Interactions Between Two Dummy Variables



Dummy
Variable Variable

- Does the marginal effect on $Y$ of one dummy going from "off" to "on" change depending on whether the other dummy is "off" or "on"?


## Interactions Between Two Dummy Variables

$$
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+\beta_{3}\left(D_{1 i} \times D_{2 i}\right)
$$

- $D_{1 i}$ and $D_{2 i}$ are dummy variables
- $\hat{\beta}_{1}$ : effect on $Y$ of going from $D_{1 i}=0$ to $D_{1 i}=1$ when $D_{2 i}=0$
- $\hat{\beta}_{2}$ : effect on $Y$ of going from $D_{2 i}=0$ to $D_{2 i}=1$ when $D_{1 i}=0$
- $\hat{\beta_{3}}$ : effect on $Y$ of going from $D_{1 i}=0$ to $D_{1 i}=1$ when $D_{2 i}=1$
- increment to the effect of $D_{1 i}$ going from 0 to 1 when $D_{2 i}=1$ (vs. 0)
- As always, best to think logically about possibilities (when each dummy $=0$ or $=1$ )


## 2 Dummy Interaction: Interpretting Coefficients

$$
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+\beta_{3}\left(D_{1 i} \times D_{2 i}\right)
$$

- To interpret coefficients, compare cases:
- Hold $D_{2}$ constant (set to some value $D_{2}=\mathbf{d}_{2}$ )
- Plug in 0s or 1s for $D_{1}$

$$
\begin{aligned}
& E\left(Y \mid D_{1}=0, D_{2}=\mathbf{d}_{\mathbf{2}}\right)=\beta_{0}+\beta_{2} \mathbf{d}_{\mathbf{2}} \\
& E\left(Y \mid D_{1}=1, D_{2}=\mathbf{d}_{\mathbf{2}}\right)=\beta_{0}+\beta_{1}(1)+\beta_{2} \mathbf{d}_{\mathbf{2}}+\beta_{3}(1) \mathbf{d}_{\mathbf{2}}
\end{aligned}
$$

- Subtracting the two, the difference is:

$$
\beta_{1}+\beta_{3} \mathbf{d}_{2}
$$

- The marginal effect of $D_{1} \rightarrow Y$ depends on the value of $D_{2}$
- $\hat{\beta}_{3}$ is the increment to the effect of $D_{1}$ on $Y$ when $D_{2}$ goes from 0 to 1


## Interactions Between 2 Dummy Variables: Example

## Example

Does the gender pay gap change if a person is married vs. single?

- Logically, there are 4 possible combinations of female $_{i}=\{0,1\}$ and married $_{i}=\{0,1\}$

1. Unmarried men $\left(\right.$ female $_{i}=0$, married $\left._{i}=0\right)$

$$
\widehat{w a g e_{i}}=\hat{\beta}_{0}
$$

2. Married men $\left(\right.$ female $_{i}=0$, married $\left._{i}=1\right)$

$$
\widehat{w a g e_{i}}=\hat{\beta}_{0}+\hat{\beta}_{2}
$$

3. Unmarried women $\left(\right.$ female $_{i}=1$, married $\left._{i}=0\right)$

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}+\hat{\beta_{1}}
$$

4. Married women $\left(\right.$ female $_{i}=1$, married $\left._{i}=1\right)$

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}+\hat{\beta_{1}}+\hat{\beta_{2}}+\hat{\beta_{3}}
$$

## Conditional Group Means in the Data



## Two Dummies Interaction: Group Means

$$
\widehat{\text { wage }}_{i}=\hat{\beta_{0}}+\hat{\beta_{1}} \text { female }_{i}+\hat{\beta_{2}} \operatorname{married}_{i}+\hat{\beta_{3}}\left(\text { female }_{i} \times \operatorname{married}_{i}\right)
$$

	Men	Women
Unmarried	$\$ 5.17$	$\$ 4.61$
Married	$\$ 7.98$	$\$ 4.57$

## Two Dummies Interaction: Regression in R I



## Two Dummies Interaction: Regression in R II

- Code

Wage	
Constant	$5.17^{* * *}$
	(0.36)
female	-0.56
	(0.47)
married	2.82***
	(0.44)
female:married	$-2.86 * * *$
	(0.61)
n	526
Adj. R ${ }^{2}$	0.18
SER	3.34
* p < 0.1, ** p < 0.05, *** p 0.01	

# Two Dummies Interaction: Interpretting Coefficients I 

$\widehat{\text { wage }}_{i}=5.17-0.56$ female $_{i}+2.82$ married $_{i}-2.86\left(\right.$ female $_{i} \times$ married $\left._{i}\right)$

	Men	Women
Unmarried	$\$ 5.17$	$\$ 4.61$
Married	$\$ 7.98$	$\$ 4.57$

- Wage for unmarried men: $\hat{\beta_{0}}=5.17$
- Wage for married men: $\hat{\beta_{0}}+\hat{\beta_{2}}=5.17+2.82=7.98$
- Wage for unmarried women: $\hat{\beta_{0}}+\hat{\beta_{1}}=5.17-0.56=4.61$
- Wage for married women: $\hat{\beta_{0}}+\hat{\beta_{1}}+\hat{\beta_{2}}+\hat{\beta_{3}}=5.17-0.56+2.82-2.86=4.57$


# Two Dummies Interaction: Interpretting Coefficients II 

$$
\widehat{\text { wage }}_{i}=5.17-0.56 \text { female }_{i}+2.82 \text { married }_{i}-2.86\left(\text { female }_{i} \times \text { married }_{i}\right)
$$

	Men	Women	Diff
Unmarried	$\$ 5.17$	$\$ 4.61$	$\mathbf{\$ 0 . 5 6}$
Married	$\$ 7.98$	$\$ 4.57$	$\$ 3.41$
Diff	$\mathbf{\$ 2 . 8 1}$	$\$ 0.04$	$\mathbf{\$ 2 . 8 5}$

- $\hat{\beta}_{0}$ : Wage for unmarrried men
- $\hat{\beta}_{1}$ : Difference in wages between men and women who are unmarried
- $\hat{\beta}_{2}$ : Difference in wages between married and unmarried men
- $\widehat{\beta_{3}}$ : Difference in:
- effect of Marriage on wages between men and women
- effect of Gender on wages between unmarried and married individuals
- "difference in differences"


## Interactions Between Two Continuous Variables

## Interactions Between Two Continuous Variables



Continuous
Variable


## Continuous

Variable

- Does the marginal effect of $X_{1}$ on $Y$ depend on what $X_{2}$ is set to?


## Interactions Between Two Continuous Variables

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3}\left(X_{1 i} \times X_{2 i}\right)
$$

- To interpret coefficients, compare changes after changing $\Delta X_{1 i}$ (holding $X_{2}$ constant):

$$
Y_{i}+\Delta Y_{i}=\beta_{0}+\beta_{1}\left(X_{1}+\Delta X_{1 i}\right) \beta_{2} X_{2 i}+\beta_{3}\left(\left(X_{1 i}+\Delta X_{1 i}\right) \times X_{2 i}\right)
$$

- Take the difference to get:

$$
\begin{aligned}
\Delta Y_{i} & =\beta_{1} \Delta X_{1 i}+\beta_{3} X_{2 i} \Delta X_{1 i} \\
\frac{\Delta Y_{i}}{\Delta X_{1 i}} & =\beta_{1}+\beta_{3} X_{2 i}
\end{aligned}
$$

- The effect of $X_{1} \rightarrow Y$ depends on the value of $X_{2}$
- $\beta_{3}$ : increment to the effect of $X_{1} \rightarrow Y$ for every 1 unit change in $X_{2}$


## Continuous Variables Interaction: Example

## Example

Do education and experience interact in their determination of wages?

$$
\widehat{\text { wage }}_{i}=\hat{\beta_{0}}+\hat{\beta}_{1} \text { education }_{i}+\hat{\beta}_{2} \text { experience }_{i}+\hat{\beta}_{3}\left(\text { education }_{i} \times \text { experience }_{i}\right)
$$

- Estimated effect of education on wages depends on the amount of experience (and vice versa)!

$$
\begin{aligned}
& \frac{\Delta \text { wage }}{\Delta \text { education }}=\hat{\beta_{1}}+\beta_{3} \text { experience }_{i} \\
& \frac{\Delta \text { wage }}{\Delta \text { experience }}=\hat{\beta_{2}}+\beta_{3} \text { education }_{i}
\end{aligned}
$$

- This is a type of nonlinearity (we will examine nonlinearities next lesson)


## Continuous Variables Interaction: In R I

```1 reg_cont <- lm(wage ~ educ + exper + educ:exper, data = wages) 2 reg_cont %>% tidy()```		
term	estimate	std.error
<chr>	<dbl>	<dbl>
(Intercept)	-2.859915627	1.181079647
educ	0.601735470	0.089899977
exper	0.045768911	0.042613758
educ:exper	0.002062345	0.003490614
4 rows \| 1-3 of 5 columns		

Continuous Variables Interaction: In R II

- Code

	Wage
Constant	-2.86**
	(1.18)
educ	0.60***
	(0.09)
exper	0.05
	(0.04)
educ:exper	0.00
	(0.00)
n	526
Adj. R^{2}	0.22
SER	3.25
* $\mathrm{p}<0.1$, ** $\mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$	

Continuous Variables Interaction: Marginal Effects

$\widehat{\text { wage }}_{i}=-2.860+0.602$ education $_{i}+0.047$ experience $_{i}+0.002$ (education $_{i} \times$ exper Marginal Effect of Education on Wages by Years of Experience:

Experience	$\frac{\Delta \text { wage }}{\Delta \text { education }}=\hat{\beta}_{1}+\hat{\beta}_{3}$ experience
5 years	$0.602+0.002(5)=0.612$
10 years	$0.602+0.002(10)=0.622$
15 years	$0.602+0.002(15)=0.632$

- Marginal effect of education \rightarrow wages increases with more experience

Continuous Variables Interaction: Marginal Effects

$\widehat{\text { wage }}_{i}=-2.860+0.602$ education $_{i}+0.047$ experience $_{i}+0.002$ (education $_{i} \times$ exper 3 Marginal Effect of Experience on Wages by Years of Education:

Education	$\frac{\Delta \text { wage }}{\Delta \text { experience }}=\hat{\beta_{2}}+\hat{\beta_{3}}$ education
5 years	$0.047+0.002(5)=0.057$
10 years	$0.047+0.002(10)=0.067$
15 years	$0.047+0.002(15)=0.077$

- Marginal effect of experience \rightarrow wages increases with more education
- If you want to estimate the marginal effects more precisely, and graph them, see the appendix in today's appendix

[^0]: ECON 480 - Econometrics

