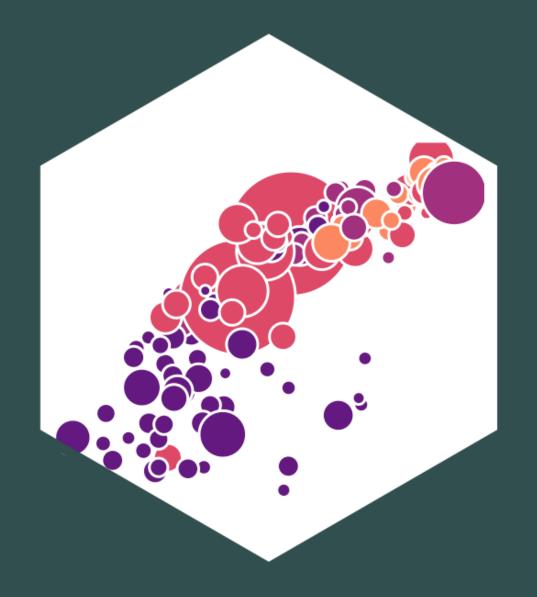
4.3 — Categorical Data ECON 480 • Econometrics • Fall 2022

Dr. Ryan Safner Associate Professor of Economics

safner@hood.edu
ryansafner/metricsF22
metricsF22.classes.ryansafner.com



Contents

Working with factor Variables in R

Regression with Dummy Variables

Recoding Dummy Variables

Categorical Variables (More than 2 Categories)

Interaction Effects

Interactions Between a Dummy and Continuous Variable

Interactions Two Dummy Variables

Interactions Between Two Continuous Variables

Categorical Variables

- Categorical variables place an individual into one of several possible categories
 - e.g. sex, season, political party
 - may be responses to survey questions
 - can be quantitative (e.g. age, zip code)
- In R: character or factor type data
 - factor ⇒ specific possible categories

Question	Categories or Responses
Do you invest in the stock market?	Yes No
What kind of advertising do you use?	Newspapers Internet Direct mailings
What is your class at school?	Freshman Sophomore Junior Senior
I would recommend this course to another student.	Strongly Disagree Slightly Disagree Slightly Agree Strongly Agree
How satisfied are you with this product?	Very Unsatisfied Unsatisfied Satisfied Very Satisfied

Working with factor Variables in R

Factors in R I

- factor is a special type of character object class that indicates membership in a category (called a level)
- Suppose I have data on students:

	rank	grade <dbl></dbl>
<dbl></dbl>	<cul></cul>	<jud></jud>
1	Freshman	76
2	Junior	82
3	Sophomore	73
4	Sophomore	95
5	Senior	74
5 rows		

• See that Rank is a character (<chr>) variable, just a string of text

Factors in R II

• We can make rank a factor variable, to indicate a student is a member of one of the possible categories: (freshman, sophomore, junior, senior)

```
students <- students %>%
     mutate(rank = as.factor(rank)) # overwrite and change class of Rank to factor
   students %>% head(n = 5)
                  id
                      rank
                                                                                             grade
                                                                                              <dbl>
              <dbl> <fct>
                      Freshman
                                                                                                 76
                      Junior
                                                                                                 82
                      Sophomore
                                                                                                  73
                      Sophomore
                                                                                                 95
                      Senior
                                                                                                 74
5 rows
```


See now it's a factor (<fct>)

Factors in R III

```
1 # what are the categories?
 2 students %>%
     group_by(rank) %>%
     count()
 rank
                                                                                                <int>
 <fct>
 Freshman
 Junior
 Senior
 Sophomore
4 rows
 1 # note the order is arbitrary! This is an "unordered" factor
```


Ordered Factors in R I

- If there is a rank order you wish to preserve, you can make an ordered (factor) variable
 - list the levels from 1st to last

id	rank	grade	
<dbl></dbl>	<ord></ord>	<dpl></dpl>	
1	Freshman	76	
2	Junior	82	
3	Sophomore	73	
4	Sophomore	95	
ECON 480 — Econometrics			

id	rank	grade
<dbl></dbl>	<ord></ord>	grade <dbl></dbl>
5	Senior	74
5 rows		

Ordered Factors in R II

```
students %>%
     group_by(rank) %>%
     count()
                                                             rank
                                                                                           <int>
                                                            <ord>
                                                        Freshman
                                                      Sophomore
                                                           Junior
                                                           Senior
4 rows
```


Example Research Question with Categorical Data

How much higher wages, on average, do men earn compared to women?

A Difference in Group Means

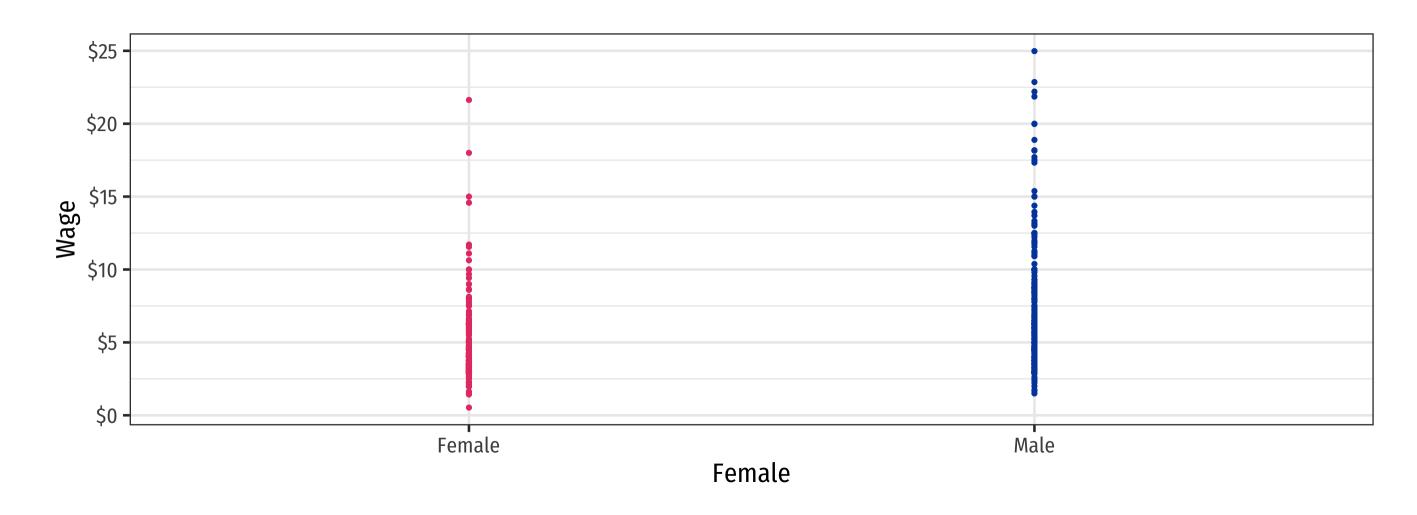
 Basic statistics: can test for statistically significant difference in group means with a ttest¹, let:

- Y_M : average earnings of a sample of n_M men
- $[Y_W]$ {.pink: average earnings of a sample of n_M women
- **Difference** in group averages: $d = \bar{Y}_M \bar{Y}_W$
- The hypothesis test is:
 - $H_0 : d = 0$
 - $H_1: d \neq 0$

Plotting factors in R

• Plotting wage vs. a factor variable, e.g. gender (which is either Male or Female) looks like this

Plot Code



- Effectively R treats values of a factor variable as integers (e.g. "Female" = 0, "Male" = 1)
- Let's make this more explicit by making a **dummy variable** to stand in for gender

Regression with Dummy Variables

Comparing Groups with Regression

- In a regression, we can easily compare across groups via a dummy variable¹
- Dummy variable only = 0 or = 1, if a condition is TRUE vs. FALSE
- Signifies whether an observation belongs to a category or not

Example

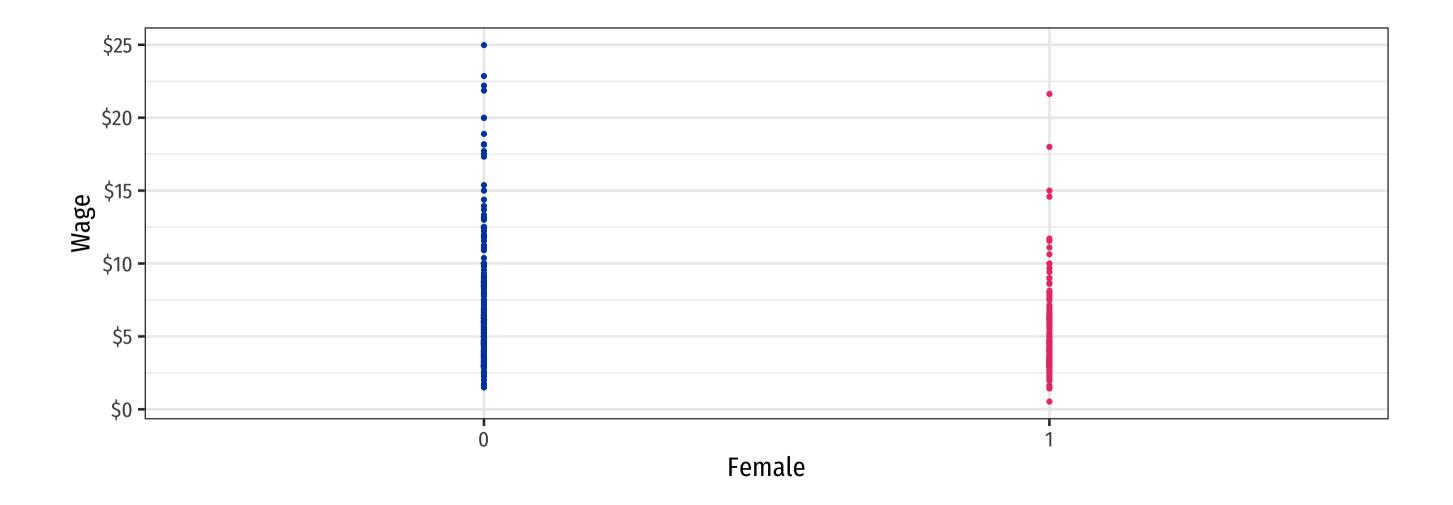
$$\widehat{Wage}_i = \hat{\beta}_0 + \hat{\beta}_1 Female_i$$
 where $Female_i = \begin{cases} 1 & \text{if individual } i \text{ is } Female \\ 0 & \text{if individual } i \text{ is } Male \end{cases}$

• Again, \hat{eta}_1 makes less sense as the "slope" of a line in this context

Comparing Groups in Regression: Scatterplot

Plot

Code

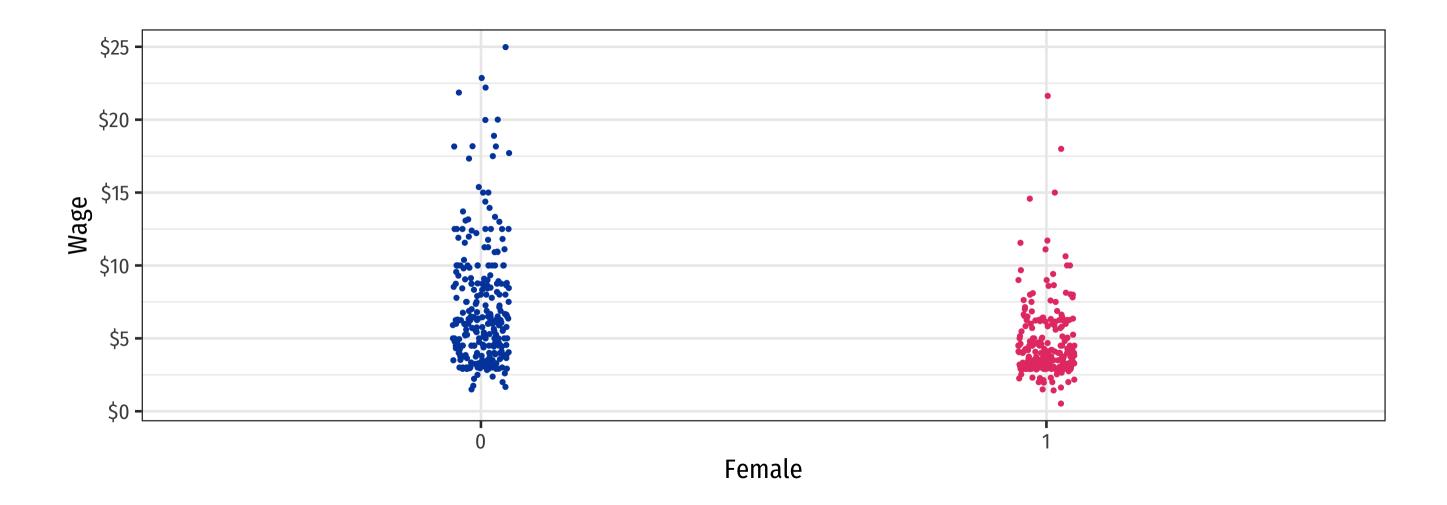


• Hard to see relationships because of **overplotting** . . .

Comparing Groups in Regression: Scatterplot

Plot

Code



- Tip: use geom_jitter() instead of geom_point() to randomly nudge points!
 - Only used for plotting, does not affect actual data, regression, etc.

Dummy Variables as Group Means

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 D_i \quad \text{where } D_i = \{0, 1\}$$

- When $D_i = 0$ ("Control group"):
 - $\bullet \hat{Y}_i = \hat{\beta}_0$
 - $E[Y_i|D_i=0]=\hat{\beta_0}\iff$ the mean of Y when $D_i=0$
- When $D_i = 1$ ("Treatment group"):
 - $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 D_i$
 - $E[Y_i|D_i=1]=\hat{\beta_0}+\hat{\beta_1}\iff$ the mean of Y when $D_i=1$
- So the **difference** in group means:

$$= E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

$$= (\hat{\beta}_0 + \hat{\beta}_1) - (\hat{\beta}_0)$$

$$= \hat{\beta}_1$$

Dummy Variables as Group Means: Our Example

Example

$$\widehat{Wage}_i = \hat{\beta_0} + \hat{\beta_1} Female_i$$

• Mean wage for men:

$$E[Wage|Female = 0] = \hat{\beta}_0$$

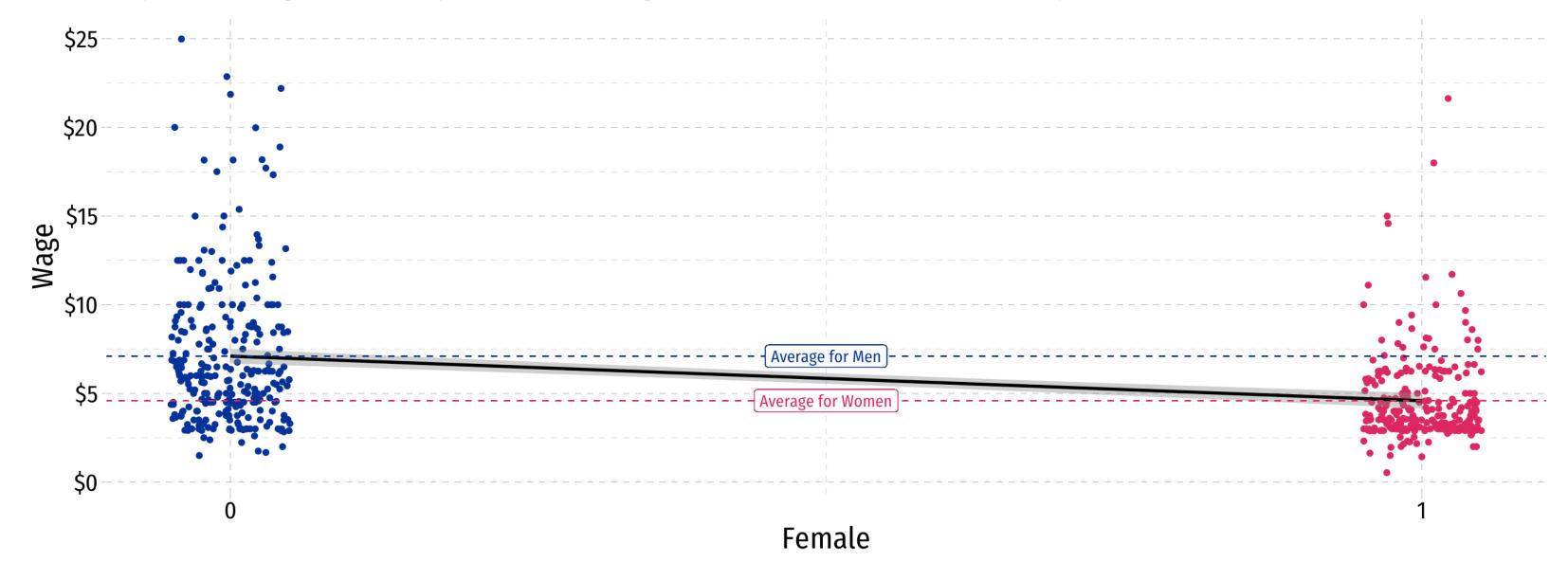
• Mean wage for women:

$$E[Wage|Female = 1] = \hat{\beta}_0 + \hat{\beta}_1$$

• Difference in wage between men & women:

$$\hat{\beta}_1$$

Comparing Groups in Regression: Scatterplot



$$\widehat{Wage}_i = \hat{\beta}_0 + \hat{\beta}_1 Female_i$$

The Data

	_	gender	educ	exper	tenure
	<dpl><</dpl>	<1CL>	<int></int>	<int></int>	<int></int>
1	3.10	Female	11	2	0
2	3.24	Female	12	22	2
3	3.00	Male	11	2	0
4	6.00	Male	8	44	28
5	5.30	Male	12	7	2
6	8.75	Male	16	9	8
7	11.25	Male	18	15	7
8	5.00	Female	12	5	3
9	3.60	Female	12	26	4
10	18.18	Male	17	22	21
1-10 of 526 rows 1	1-6 of 25 columns			Previous	s 1 2 3 4 5 6 53 Next

Conditional Group Means

```
1 # Summarize for Men
2
3 wages %>%
4 filter(gender=="Male") %>%
5 summarize(mean = mean(wage),
6 sd = sd(wage))
```

mean

<dbl>

7.099489

1 row | 1-1 of 2 columns

```
1 # Summarize for Women
2
3 wages %>%
4 filter(gender=="Female") %>%
5 summarize(mean = mean(wage),
6 sd = sd(wage))
```

mean

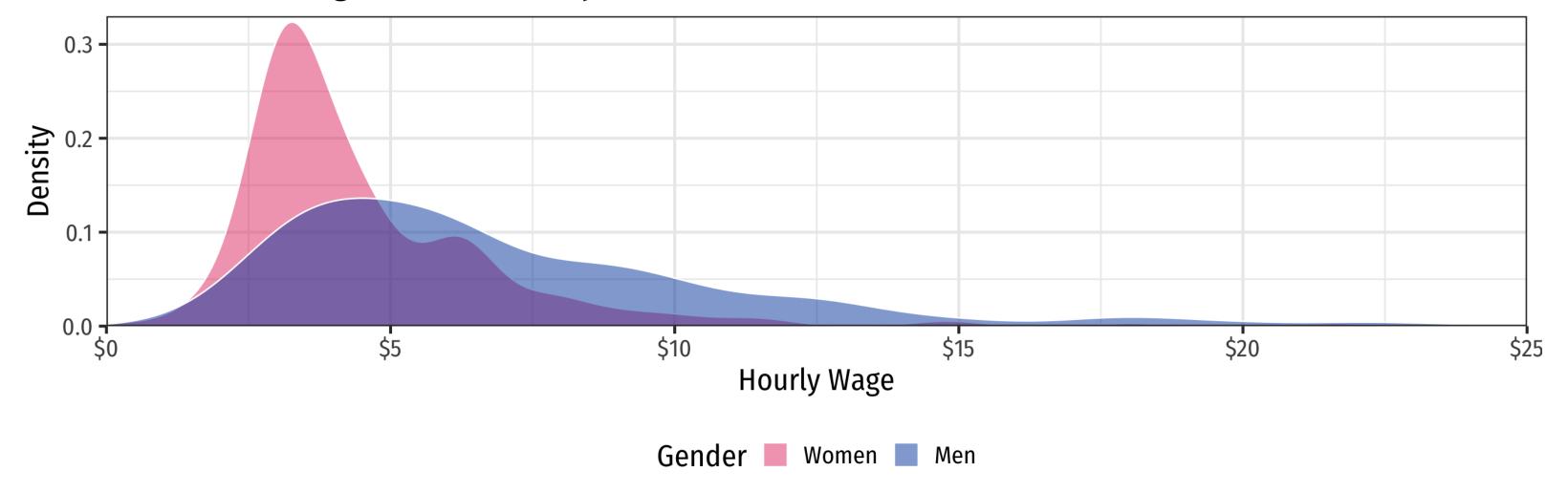
<dbl>

4.587659

1 row | 1-1 of 2 columns

Visualize Differences

Conditional Wage Distribution by Gender



The Regression (factor variables)

```
1 reg <- lm(wage ~ gender, data = wages)</pre>
 2 summary(reg)
Call:
lm(formula = wage ~ gender, data = wages)
Residuals:
    Min
            10 Median
-5.5995 -1.8495 -0.9877 1.4260 17.8805
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.5877
                        0.2190 20.950 < 2e-16 ***
             2.5118
                        0.3034 8.279 1.04e-15 ***
genderMale
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.476 on 524 degrees of freedom
Multiple R-squared: 0.1157, Adjusted R-squared: 0.114
F-statistic: 68.54 on 1 and 524 DF, p-value: 1.042e-15
```

```
1 library(broom)
2 tidy(reg)

term
<chr>
    (Intercept)
genderMale
2 rows | 1-1 of 5 columns
```

- Putting the factor variable gender in, R automatically chooses a value to set as TRUE, in this case Male = TRUE
 - genderMALE = 1 for Male, = 0 for Female
- According to the data, men earn, on average, \$2.51 more than women

The Regression: Dummy Variables

• Let's explicitly make gender into a dummy variable for female:

```
# add a female dummy variable
   wages <- wages %>%
     mutate(female = ifelse(test = gender == "Female",
                          yes = 1,
                          no = 0)
 1 wages
                                                            female
                                                                                   educ
                                  wage
                                                                                                           exper
                                                                                                                                      tenure
                                  <dbl>
                                                              <dbl>
                                                                                                                                        <int>
                                                                                   <int>
                                                                                                            <int>
                                    3.10
                                                                                      12
                                    3.24
                                                                                                              22
 3
                                   3.00
                                                                                      11
                                                                                                                                            0
                                   6.00
                                                                                                              44
                                                                                                                                          28
 4
                                                                                       8
 5
                                   5.30
                                                                                      12
 6
                                    8.75
                                                                  0
                                                                                      16
                                                                                                                9
                                   11.25
                                                                                      18
                                                                                                               15
                                                                  0
                                   5.00
                                                                                      12
 8
                                                                                                              26
                                   3.60
                                                                                      12
 9
 10
                                                                                      17
                                   18.18
1-10 of 526 rows | 1-6 of 26 columns
                                                                                                              Previous 1 2 3 4 5 6 53 Next
```


The Regression (Dummy variables)

```
1 female reg <- lm(wage ~ female, data = wages)</pre>
 2 summary(female reg)
Call:
lm(formula = wage ~ female, data = wages)
Residuals:
   Min
            1Q Median
-5.5995 -1.8495 -0.9877 1.4260 17.8805
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.0995
                        0.2100 33.806 < 2e-16 ***
            -2.5118 0.3034 -8.279 1.04e-15 ***
female
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.476 on 524 degrees of freedom
Multiple R-squared: 0.1157, Adjusted R-squared: 0.114
F-statistic: 68.54 on 1 and 524 DF, p-value: 1.042e-15
```

```
1 library(broom)
2 tidy(female_reg)

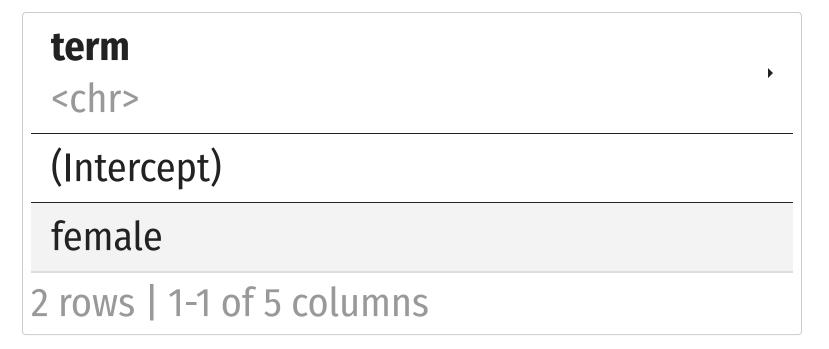
term
<chr>
    (Intercept)
female
2 rows | 1-1 of 5 columns
```


Dummy Regression vs. Group Means

From tabulation of group means

Gender	Avg. Wage	Std. Dev.	n
Female	4.59	2.33	252
Male	7.10	4.16	274
Difference	2.51	0.30	_

From *t*-test of difference in group means



$$\widehat{\text{Wages}}_i = 7.10 - 2.51 \, \text{Female}_i$$

Recoding Dummy Variables

Recoding Dummy Variables

\bigcirc

Example

Suppose instead of female we had used:

$$\widehat{Wage}_i = \hat{\beta}_0 + \hat{\beta}_1 Male_i$$
 where $Male_i = \begin{cases} 1 & \text{if person } i \text{ is } Male \\ 0 & \text{if person } i \text{ is } Female \end{cases}$

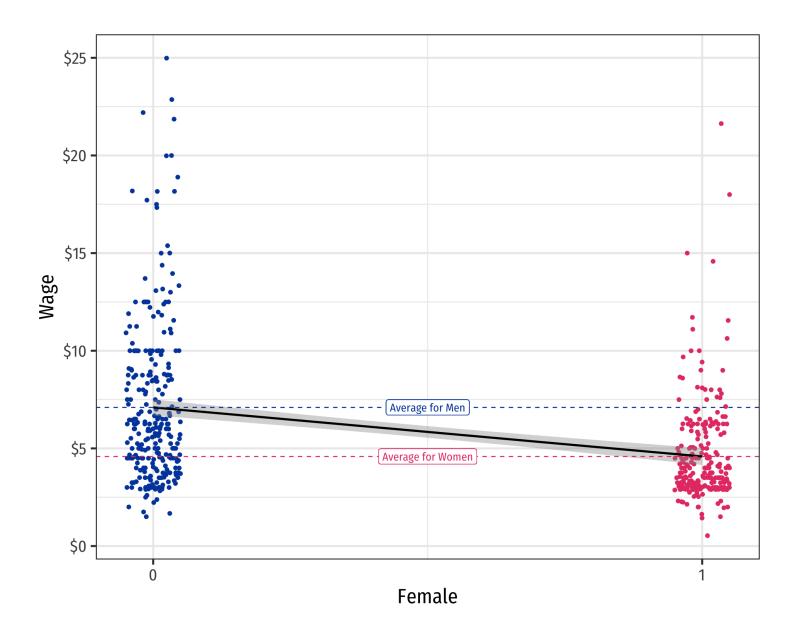
Recoding Dummies in the Data

```
wages <- wages %>%
mutate(male = ifelse(female == 0, # condition: is female equal to 0?
yes = 1, # if true: code as "1"
no = 0)) # if false: code as "0"

# verify it worked
wages %>%
select(wage, female, male) %>%
head(n = 5)
```

	wage	female	male
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	3.10	1	0
2	3.24	1	0
3	3.00	0	1
4	6.00	0	1
5	5.30	0	1
5 rows			

Scatterplot with Male





Dummy Variables as Group Means: With Male

Example

$$\widehat{Wage}_i = \hat{\beta}_0 + \hat{\beta}_1 Male_i$$

• Mean wage for men:

$$E[Wage|Male = 1] = \hat{\beta_0} + \hat{\beta_1}$$

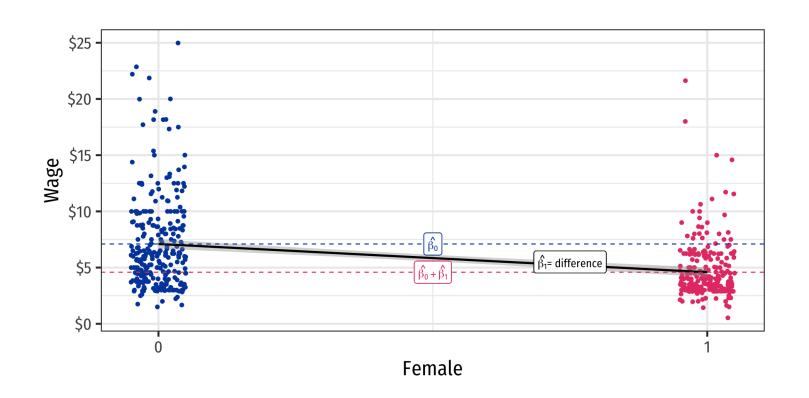
• Mean wage for women:

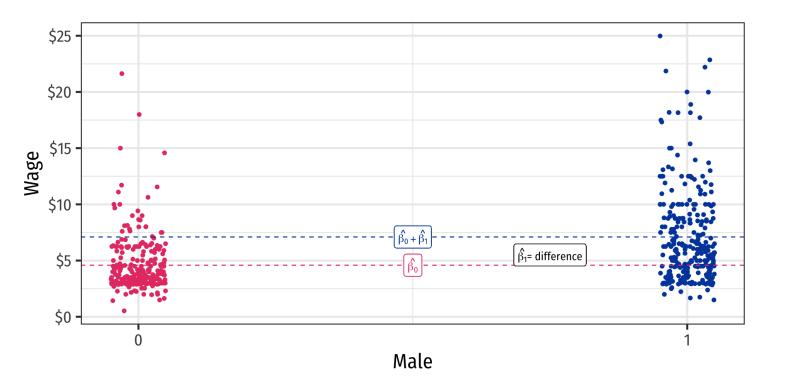
$$E[Wage|Male = 0] = \hat{\beta_0}$$

• Difference in wage between men & women:

$$\hat{\beta}_1$$

Scatterplot & Regression Line with Male





The Regression with Male

```
male reg <- lm(wage ~ male, data = wages)</pre>
 2 summary(male reg)
Call:
lm(formula = wage ~ male, data = wages)
Residuals:
   Min
           10 Median
                          30
                                Max
-5.5995 -1.8495 -0.9877 1.4260 17.8805
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.5877
                      0.2190 20.950 < 2e-16 ***
            male
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
```

```
1 library(broom)
2 tidy(male_reg)

term
<chr>
  (Intercept)

male
2 rows | 1-1 of 5 columns
```


The Dummy Regression: Male or Female

	Wage	Wage
Constant	7.10***	4.59***
	(0.21)	(0.22)
female	-2.51***	
	(0.30)	
male		2.51***
		(0.30)
n	526	526
Adj. R ²	0.11	0.11
SER	3.47	3.47
* p < 0.1, **	p < 0.05, **	** p < 0.01

- Note it doesn't matter if we use male or female, difference is always \$2.51
- Compare the constant (average for the D=0 group)
- Should you use male AND female in a regression? We'll come to that...

Categorical Variables (More than 2 Categories)

Categorical Variables with More than 2 Categories

- A categorical variable expresses membership in a category, where there is no ranking or hierarchy of the categories
 - We've looked at categorical variables with 2 categories only
 - e.g. Male/Female, Spring/Summer/Fall/Winter, Democratic/Republican/Independent
- Might be an **ordinal variable** expresses rank or an ordering of data, but not necessarily their relative magnitude
 - e.g. Order of finalists in a competition (1st, 2nd, 3rd)
 - e.g. Highest education attained (1=elementary school, 2=high school, 3=bachelor's degree,
 4=graduate degree)
 - in R, an ordered factor

Using Categorical Variables in Regression I

\bigcirc

Example

How do wages vary by region of the country? Let $Region_i = \{Northeast, Midwest, South, West\}$

• Can we run the following regression?

$$\widehat{Wages}_i = \hat{\beta}_0 + \hat{\beta}_1 Region_i$$

Using Categorical Variables in Regression II

Example

How do wages vary by region of the country? Let $Region_i = \{Northeast, Midwest, South, West\}$

• Code region numerically:

$$Region_{i} = \begin{cases} 1 & \text{if } i \text{ is in } Northeast \\ 2 & \text{if } i \text{ is in } Midwest \\ 3 & \text{if } i \text{ is in } South \\ 4 & \text{if } i \text{ is in } West \end{cases}$$

Can we run the following regression?

$$\widehat{Wages_i} = \hat{\beta_0} + \hat{\beta_1} Region_i$$

Using Categorical Variables in Regression III

\bigcirc

Example

How do wages vary by region of the country? Let $Region_i = \{Northeast, Midwest, South, West\}$

- Create a dummy variable for each region:
 - $Northeast_i = 1$ if i is in Northeast, otherwise = 0
 - $Midwest_i = 1$ if i is in Midwest, otherwise = 0
 - $South_i = 1$ if i is in South, otherwise = 0
 - $West_i = 1$ if i is in West, otherwise = 0
- Can we run the following regression?

$$\widehat{Wages}_i = \hat{\beta}_0 + \hat{\beta}_1 Northeast_i + \hat{\beta}_2 Midwest_i + \hat{\beta}_3 South_i + \hat{\beta}_4 West_i$$

The Dummy Variable Trap

Example

$$\widehat{Wages}_i = \hat{\beta}_0 + \hat{\beta}_1 Northeast_i + \hat{\beta}_2 Midwest_i + \hat{\beta}_3 South_i + \hat{\beta}_4 West_i$$

• If we include *all* possible categories, they are **perfectly multicollinear**, an exact linear function of one another:

$$Northeast_i + Midwest_i + South_i + West_i = 1 \quad \forall i$$

• This is known as the dummy variable trap, a common source of perfect multicollinearity

The Reference Category

- To avoid the dummy variable trap, always omit one category from the regression, known as the "reference category"
- It does not matter which category we omit!
- Coefficients on each dummy variable measure the *difference* between the *reference* category and each category dummy

The Reference Category: Example

Ez

Example

$$\widehat{Wages}_i = \hat{\beta_0} + \hat{\beta_1} Northeast_i + \hat{\beta_2} Midwest_i + \hat{\beta_3} South_i :::$$

- $West_i$ is omitted (arbitrarily chosen)
- $\hat{\beta}_0$: average wage for i in the West
- $\hat{\beta}_1$: difference between West and Northeast
- $\hat{\beta}_2$: difference between West and Midwest
- $\hat{\beta}_3$: difference between West and South

Regression in R with Categorical Variable

```
lm(wage ~ region, data = wages) %>% summary()
Call:
lm(formula = wage ~ region, data = wages)
Residuals:
   Min
           10 Median
                          30
                                Max
-6.083 -2.387 -1.097 1.157 18.610
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                  5.7105 0.3195 17.871
                                               <2e-16 ***
(Intercept)
regionNortheast 0.6593 0.4651 1.418 0.1569 regionSouth -0.3236 0.4173 -0.775 0.4385
regionWest
              0.9029 0.5035 1.793
                                               0.0735 .
```


Regression in R with Dummies (& Dummy Variable Trap)

R automatically drops one category to avoid perfect multicollinearity

Using Different Reference Categories in R

	Wage	Wage	Wage	Wage		
Constant	6.37***	5.71***	5.39***	6.61***		
	(0.34)	(0.32)	(0.27)	(0.39)		
northcen	-0.66		0.32	-0.90*		
	(0.47)		(0.42)	(0.50)		
south	-0.98**	-0.32		-1.23***		
	(0.43)	(0.42)		(0.47)		
west	0.24	0.90*	1.23***			
	(0.52)	(0.50)	(0.47)			
northeast		0.66	0.98**	-0.24		
		(0.47)	(0.43)	(0.52)		
n	526	526	526	526		
R^2	0.02	0.02	0.02	0.02		
Adj. R ²	0.01	0.01	0.01	0.01		
SER	3.66	3.66	3.66	3.66		
* p < 0.1, ** p < 0.05, *** p < 0.01						

- Constant is alsways average wage for reference (omitted) region
- Compare coefficients between Midwest in (1) and Northeast in (2)...
- Compare coefficients between West in (3) and South in (4)...
- Does not matter which region we omit!
 - Same R^2 , SER, coefficients give same results

Dummy Dependent (Y) Variables

• In many contexts, we will want to have our dependent (Y) variable be a dummy variable

Example $\widehat{\text{Admitted}}_i = \widehat{\beta_0} + \widehat{\beta_1} \ GPA_i \quad \text{where Admitted}_i = \left\{ \begin{array}{ll} 1 & \text{if } i \text{ is Admitted} \\ 0 & \text{if } i \text{ is Not Admitted} \end{array} \right.$

- A model where Y is a dummy is called a linear probability model, as it measures the probability of Y occurring given the X's, i.e. $P(Y_i = 1 | X_1, \cdots, X_k)$
 - ullet e.g. the probability person i is Admitted to a program with a given GPA
- Special models to properly interpret and extend this (logistic "logit", probit, etc)
- Feel free to write papers with dummy Y variables!

Interaction Effects

Sliders and Switches

- ullet Marginal effect of dummy variable: effect on Y of going from 0 to 1
- ullet Marginal effect of continuous variable: effect on Y of a 1 unit change in X

Interaction Effects

ullet Sometimes one X variable might interact with another in determining Y

Example

Consider the gender pay gap again.

- Gender affects wages
- Experience affects wages
- Does experience affect wages differently by gender?
 - i.e. is there an interaction effect between gender and experience?
- Note this is NOT the same as just asking: "do men earn more than women with the same amount of experience?"

Three Types of Interactions

- Depending on the types of variables, there are 3 possible types of interaction effects
- We will look at each in turn
- 1. Interaction between a **dummy** and a **continuous** variable:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$$

2. Interaction between a **two dummy** variables:

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i})$$

3. Interaction between a **two continuous** variables:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i})$$

Interactions Between a Dummy and Continuous Variable

Interactions: A Dummy & Continuous Variable

Dummy Variable

Continuous Variable

• Does the marginal effect of the continuous variable on Y change depending on whether the dummy is "on" or "off"?

Interactions: A Dummy & Continuous Variable I

• We can model an interaction by introducing a variable that is an .hi[interaction term] capturing the interaction between two variables:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$$
 where $D_i = \{0, 1\}$

- β_3 estimates the interaction effect between X_i and D_i on Y_i
- What do the different coefficients (β)'s tell us?
 - Again, think logically by examining each group $(D_i = 0 \text{ or } D_i = 1)$

Dummy-Continuous Interaction Effects as Two Regressions I

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i \times D_i$$

• When $D_i = 0$ ("Control group"):

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2(\mathbf{0}) + \hat{\beta}_3 X_i \times (\mathbf{0})$$

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

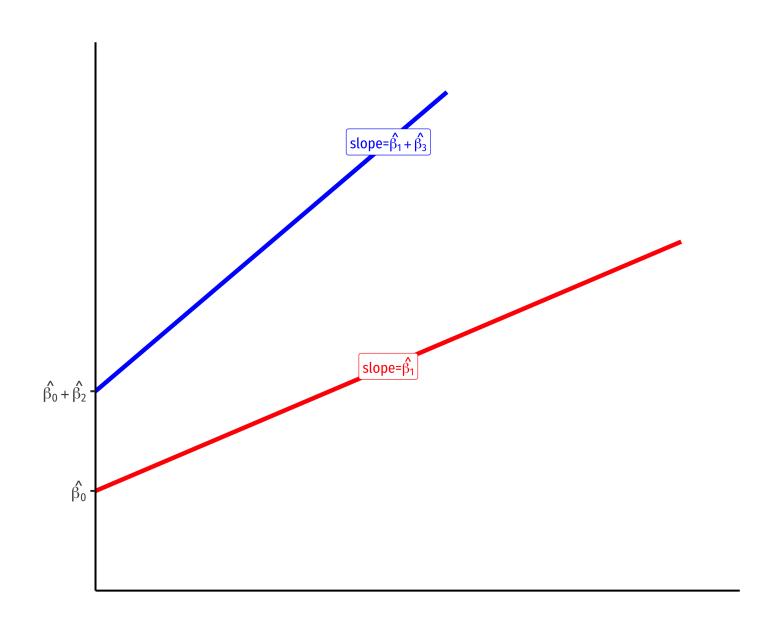
• When $D_i = 1$ ("Treatment group"):

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} X_{i} + \hat{\beta}_{2} (1) + \hat{\beta}_{3} X_{i} \times (1)$$

$$\hat{Y}_{i} = (\hat{\beta}_{0} + \hat{\beta}_{2}) + (\hat{\beta}_{1} + \hat{\beta}_{3}) X_{i}$$

• So what we really have is two regression lines!

Dummy-Continuous Interaction Effects as Two RegressionsII



• $D_i = 0$ group:

$$Y_i = \hat{\beta_0} + \hat{\beta_1} X_i$$

• $D_i = 1$ group:

$$Y_i = (\hat{\beta}_0 + \hat{\beta}_2) + (\hat{\beta}_1 + \hat{\beta}_3)X_i$$

Interpretting Coefficients I

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$$

• To interpret the coefficients, compare cases after changing X by ΔX :

$$Y_i + \Delta Y_i = \beta_0 + \beta_1 (X_i + \Delta X_i) \beta_2 D_i + \beta_3 ((X_i + \Delta X_i) D_i)$$

• Subtracting these two equations, the difference is:

$$\Delta Y_i = \beta_1 \Delta X_i + \beta_3 D_i \Delta X_i$$
$$\frac{\Delta Y_i}{\Delta X_i} = \beta_1 + \beta_3 D_i$$

- The effect of $X \to Y$ depends on the value of D_i !
- β_3 : increment to the effect of $X \to Y$ when $D_i = 1$ (vs. $D_i = 0$)

Interpretting Coefficients II

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$$

- $\hat{\beta_0}$: $E[Y_i]$ for $X_i = 0$ and $D_i = 0$
- β_1 : Marginal effect of $X_i \to Y_i$ for $D_i = 0$
- β_2 : Marginal effect on Y_i of difference between $D_i=0$ and $D_i=1$
- β_3 : The **difference** of the marginal effect of $X_i \to Y_i$ between $D_i = 0$ and $D_i = 1$
- This is a bit awkward, easier to think about the two regression lines:

Interpretting Coefficients III

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$$

- For $D_i = 0$ Group: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
 - Intercept: $\hat{\beta}_0$
 - Slope: $\hat{\beta}_1$
- $\hat{\beta}_2$: difference in intercept between groups
- $\hat{\beta}_3$: difference in slope between groups
- How can we determine if the two lines have the same slope and/or intercept?
 - Same intercept? t-test H_0 : $\beta_2 = 0$
 - Same slope? t-test H_0 : $\beta_3 = 0$

- For $D_i = 1$ Group: $\hat{Y}_i = (\hat{\beta}_0 + \hat{\beta}_2) + (\hat{\beta}_1 + \hat{\beta}_3)X_i$
 - Intercept: $\hat{\beta}_0$ + $\hat{\beta}_2$
 - Slope: $\hat{\beta}_1 + \hat{\beta}_3$

Interactions in Our Example

Example

$$\widehat{wage}_i = \hat{\beta}_0 + \hat{\beta}_1 \text{ experience}_i + \hat{\beta}_2 \text{ female}_i + \hat{\beta}_3 \text{ (experience}_i \times \text{female}_i)$$

• For men female = 0:

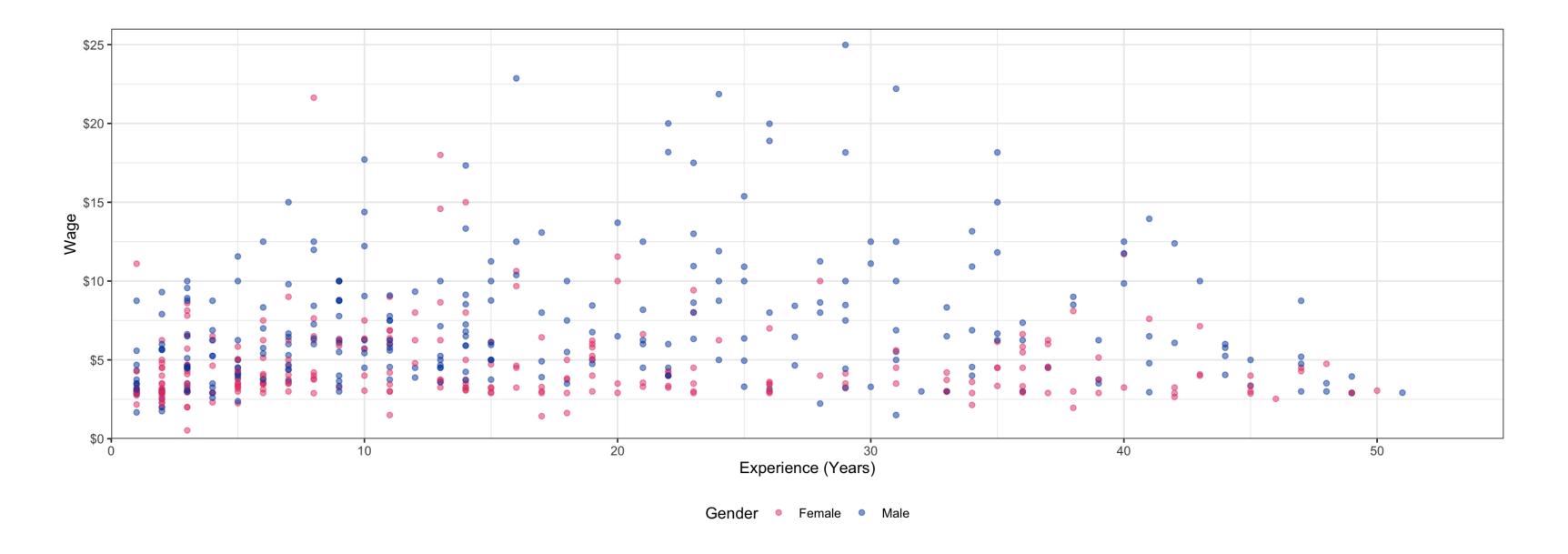
$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1} \text{ experience}_i$$

• For women female = 1:

$$\widehat{wage}_i = (\hat{\beta}_0 + \hat{\beta}_2) + (\hat{\beta}_1 + \hat{\beta}_3)$$
 experience_i intercept slope

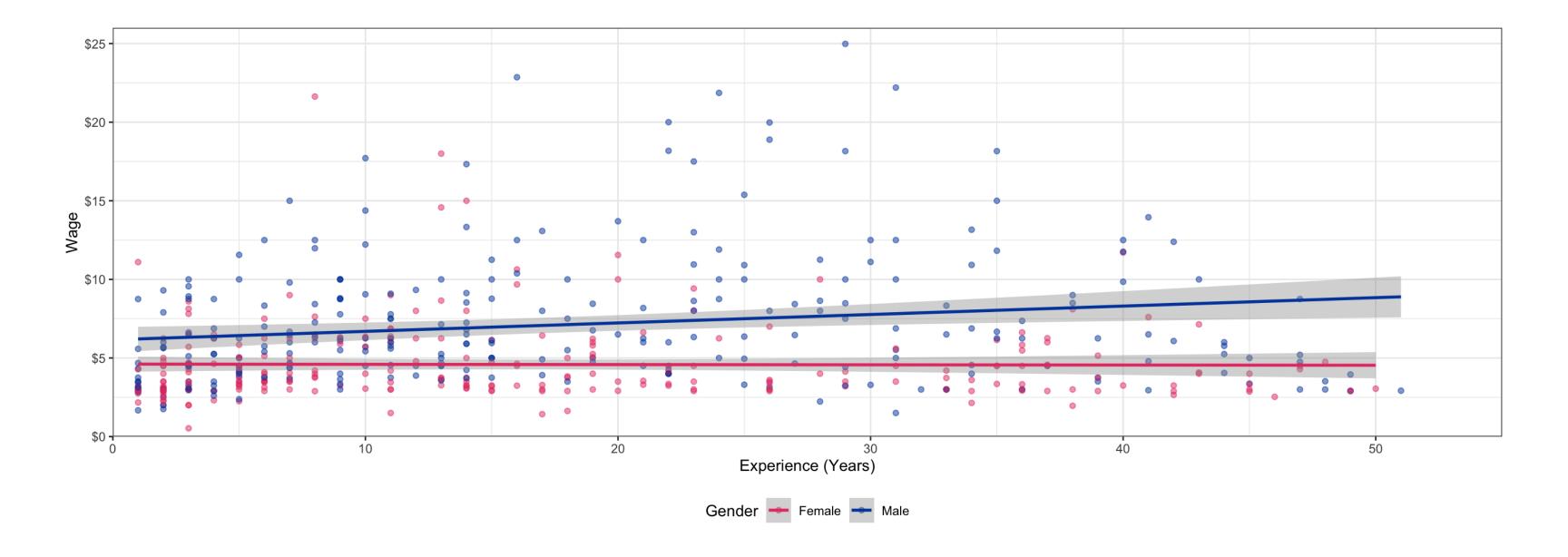
Interactions in Our Example: Scatterplot

▶ Code



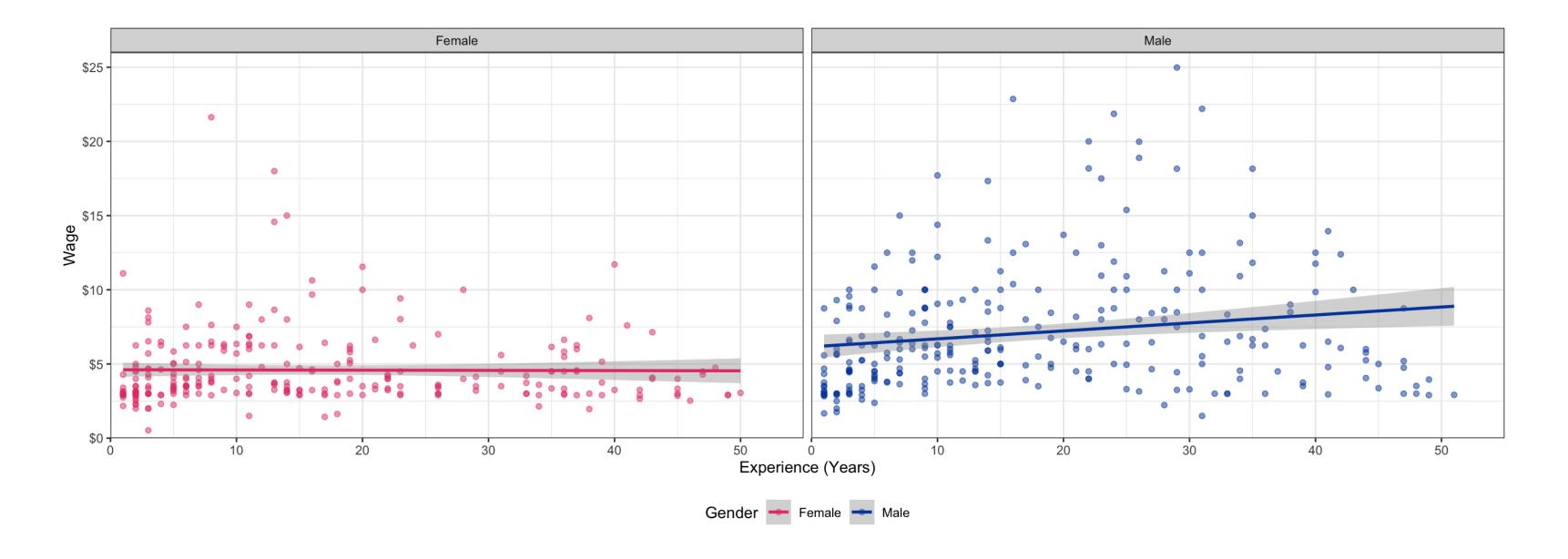
Interactions in Our Example: Scatterplot

▶ Code



Interactions in Our Example: Scatterplot

▶ Code



Interactions in Our Example: Regression in R

- Syntax for adding an interaction term is easy¹ in R: $\times 1 \times \times 2$
 - Or could just do x1 * x2 (multiply)

```
1 # both are identical in R
 2 interaction reg <- lm(wage ~ exper * female, data = wages)</pre>
 3 interaction reg <- lm(wage ~ exper + female + exper * female, data = wages)</pre>
                                                                                                                                       statistic
                                                                   estimate
                                                                                                      std.error
 term
                                                                       <dbl>
 <chr>
                                                                                                          <dbl>
                                                                                                                                          <dbl>
 (Intercept)
                                                                  6.15827549
                                                                                                                                     18.023830
                                                                                                    0.34167408
                                                                 0.05360476
                                                                                                    0.01543716
                                                                                                                                       3.472450
 exper
 female
                                                                                                    0.48186030
                                                                                                                                      -3.209534
                                                                 -1.54654677
 exper:female
                                                                -0.05506989
                                                                                                    0.02217496
                                                                                                                                      -2.483427
4 rows | 1-4 of 5 columns
```


Interactions in Our Example: Regression

► Code

	Wage
Constant	6.16***
	(0.34)
exper	0.05***
	(0.02)
female	-1.55***
	(0.48)
exper:female	-0.06**
	(0.02)
n	526
Adj. R ²	0.13
SER	3.43
* p < 0.1, ** p < 0.0	05, *** p < 0.01

Interactions in Our Example: Interpretting Coefficients

$$\widehat{\text{wage}}_i = 6.16 + 0.05 \text{ experience}_i - 1.55 \text{ female}_i - 0.06 \text{ (experience}_i \times \text{female}_i)$$

- $\hat{\beta}_0$: Men with 0 years of experience earn 6.16
- $\hat{\beta}_1$: For every additional year of experience, **men** earn \$0.05
- $\hat{\beta}_2$: Women with 0 years of experience earn \$1.55 less than men
- $\hat{\beta}_3$: Women earn \$0.06 less than men for every additional year of experience

Interactions in Our Example: As Two Regressions I

$$\widehat{\text{wage}}_i = 6.16 + 0.05 \text{ experience}_i - 1.55 \text{ female}_i - 0.06 \text{ (experience}_i \times \text{female}_i)$$

Regression for men female = 0

$$\widehat{\text{wage}}_i = 6.16 + 0.05 \text{ experience}_i$$

- Men with 0 years of experience earn \$6.16 on average
- For every additional year of experience, men earn \$0.05 more on average

Interactions in Our Example: As Two Regressions I

$$\widehat{\text{wage}}_i = 6.16 + 0.05 \text{ experience}_i - 1.55 \text{ female}_i - 0.06 \text{ (experience}_i \times \text{ female}_i)$$

Regression for women female = 1

$$\widehat{\text{wage}}_i = 6.16 + 0.05 \text{ experience}_i - 1.55(1) - 0.06 \text{ experience}_i \times (1)$$

= $(6.16 - 1.55) + (0.05 - 0.06) \text{ experience}_i$
= $4.61 - 0.01 \text{ experience}_i$

- Women with 0 years of experience earn \$4.61 on average
- For every additional year of experience, women earn \$0.01 less on average

Interactions in Our Example: Hypothesis Testing

$$\widehat{\text{wage}}_i = 6.16 + 0.05 \text{ experience}_i - 1.55 \text{ female}_i - 0.06 \text{ (experience}_i \times \text{female}_i)$$

term	estimate	std.error	statistic
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
(Intercept)	6.15827549	0.34167408	18.023830
exper	0.05360476	0.01543716	3.472450
female	-1.54654677	0.48186030	-3.209534
exper:female	-0.05506989	0.02217496	-2.483427
4 rows 1-4 of 5 columns			

- Are intercepts of the 2 regressions different? $H_0: \beta_2 = 0$
 - Difference between men vs. women for no experience?
 - Is $\hat{\beta}_2$ significant?
 - Yes (reject) *H*₀: *p*-value = 0.00
- Are slopes of the 2 regressions different? $H_0: \beta_3 = 0$
 - Difference between men vs. women for marginal effect of experience?
 - Is $\hat{\beta}_3$ significant?
 - Yes (reject) H_0 : p-value = 0.01

Interactions Between Two Dummy Variables

Interactions Between Two Dummy Variables

Dummy Variable

Dummy Variable

• Does the marginal effect on Y of one dummy going from "off" to "on" change depending on whether the *other* dummy is "off" or "on"?

Interactions Between Two Dummy Variables

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i})$$

- D_{1i} and D_{2i} are dummy variables
- $\hat{\beta_1}$: effect on Y of going from $D_{1i}=0$ to $D_{1i}=1$ when $D_{2i}=0$
- $\hat{\beta}_2$: effect on Y of going from $D_{2i}=0$ to $D_{2i}=1$ when $D_{1i}=0$
- $\hat{\beta}_3$: effect on Y of going from $D_{1i}=0$ to $D_{1i}=1$ when $D_{2i}=1$
 - increment to the effect of D_{1i} going from 0 to 1 when $D_{2i} = 1$ (vs. 0)
- As always, best to think logically about possibilities (when each dummy = 0 or = 1)

2 Dummy Interaction: Interpretting Coefficients

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i})$$

- To interpret coefficients, compare cases:
 - Hold D_2 constant (set to some value $D_2 = \mathbf{d_2}$)
 - Plug in 0s or 1s for D_1

$$E(Y|D_1 = \mathbf{0}, D_2 = \mathbf{d_2}) = \beta_0 + \beta_2 \mathbf{d_2}$$

$$E(Y|D_1 = \mathbf{1}, D_2 = \mathbf{d_2}) = \beta_0 + \beta_1(\mathbf{1}) + \beta_2 \mathbf{d_2} + \beta_3(\mathbf{1}) \mathbf{d_2}$$

• Subtracting the two, the difference is:

$$\beta_1 + \beta_3 \mathbf{d_2}$$

- The marginal effect of $D_1 o Y$ depends on the value of D_2
 - lacksquare eta_3 is the *increment* to the effect of D_1 on Y when D_2 goes from 0 to 1

Interactions Between 2 Dummy Variables: Example

Example

Does the gender pay gap change if a person is married vs. single?

$$\widehat{\text{wage}}_i = \hat{\beta_0} + \hat{\beta_1} \text{ female}_i + \hat{\beta_2} \text{ married}_i + \hat{\beta_3} \text{ (female}_i \times \text{married}_i)$$

- Logically, there are 4 possible combinations of $female_i = \{0, 1\}$ and $married_i = \{0, 1\}$
- 1. Unmarried men $(female_i = 0, married_i = 0)$

3. Unmarried women (
$$female_i = 1$$
, $married_i = 0$)

$$\widehat{wage_i} = \hat{\beta_0}$$

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}$$

2. Married men ($female_i = 0$, $married_i = 1$)

4. Married women (
$$female_i = 1$$
, $married_i = 1$)

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_2}$$

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1} + \hat{\beta_2} + \hat{\beta_3}$$

Conditional Group Means in the Data

```
1 # get average wage for unmarried men
2 wages %>%
3 filter(female == 0,
4 married == 0) %>%
5 summarize(mean = mean(wage))
```

mean

<dbl>

5.168023

1 row

```
1 # get average wage for married men
2 wages %>%
3 filter(female == 0,
4 married == 1) %>%
5 summarize(mean = mean(wage))
```

mean

<dbl>

7.983032

```
1 # get average wage for unmarried women
2 wages %>%
3 filter(female == 1,
4 married == 0) %>%
5 summarize(mean = mean(wage))
```

mean

<dbl>

4.611583

1 row

```
1 # get average wage for married women
2 wages %>%
3 filter(female == 1,
4 married == 1) %>%
5 summarize(mean = mean(wage))
```

mean

<dbl>

4.565909

1 row

ECON 480 — Econometrics

Two Dummies Interaction: Group Means

$$\widehat{\text{wage}}_i = \hat{\beta}_0 + \hat{\beta}_1 \text{ female}_i + \hat{\beta}_2 \text{ married}_i + \hat{\beta}_3 \text{ (female}_i \times \text{married}_i)$$

	Men	Women
Unmarried	\$5.17	\$4.61
Married	\$7.98	\$4.57

Two Dummies Interaction: Regression in R I

```
reg_dummies <- lm(wage ~ female + married + female:married, data = wages)</pre>
 2 reg dummies %>% tidy()
                                                                    estimate
                                                                                                                                  statistic
                                                                                                   std.error
term
                                                                                                      <dbl>
                                                                                                                                     <dbl>
 <chr>
                                                                       <dbl>
 (Intercept)
                                                                   5.1680233
                                                                                                  0.3614348
                                                                                                                                 14.298631
female
                                                                  -0.5564399
                                                                                                  0.4735578
                                                                                                                                  -1.175020
married
                                                                   2.8150086
                                                                                                  0.4363413
                                                                                                                                   6.451391
female:married
                                                                                                                                 -4.708496
                                                                  -2.8606829
                                                                                                  0.6075577
4 rows | 1-4 of 5 columns
```


Two Dummies Interaction: Regression in R II

► Code

	Wage
Constant	5.17***
	(0.36)
female	-0.56
	(0.47)
married	2.82***
	(0.44)
female:married	-2.86***
	(0.61)
n	526
Adj. R ²	0.18
SER	3.34
* p < 0.1, ** p < 0.05,	*** p < 0.01

Two Dummies Interaction: Interpretting Coefficients I

 $\widehat{\text{wage}}_i = 5.17 - 0.56 \text{ female}_i + 2.82 \text{ married}_i - 2.86 \text{ (female}_i \times \text{married}_i)$

	Men	Women
Unmarried	\$5.17	\$4.61
Married	\$7.98	\$4.57

- Wage for unmarried men: $\hat{\beta_0} = 5.17$
- Wage for married men: $\hat{\beta_0} + \hat{\beta_2} = 5.17 + 2.82 = 7.98$
- Wage for unmarried women: $\hat{\beta_0} + \hat{\beta_1} = 5.17 0.56 = 4.61$
- Wage for married women: $\hat{\beta_0} + \hat{\beta_1} + \hat{\beta_2} + \hat{\beta_3} = 5.17 0.56 + 2.82 2.86 = 4.57$

Two Dummies Interaction: Interpretting Coefficients II

 $\widehat{\text{wage}}_i = 5.17 - 0.56 \text{ female}_i + 2.82 \text{ married}_i - 2.86 (\text{female}_i \times \text{married}_i)$

	Men	Women	Diff
Unmarried	\$5.17	\$4.61	\$0.56
Married	\$7.98	\$4.57	\$3.41
Diff	\$2.81	\$0.04	\$2.85

- $\hat{eta_0}$: Wage for unmarried men
- $\hat{\beta_1}$: **Difference** in wages between **men** and **women** who are **unmarried**
- $\hat{\beta}_2$: **Difference** in wages between married and unmarried men
- $\hat{\beta}_3$: **Difference** in:
 - effect of Marriage on wages between men and women
 - effect of **Gender** on wages between **unmarried** and **married** individuals
 - "difference in differences"

Interactions Between Two Continuous Variables

Interactions Between Two Continuous Variables

Continuous Variable

Continuous Variable

• Does the marginal effect of X_1 on Y depend on what X_2 is set to?

Interactions Between Two Continuous Variables

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i})$$

• To interpret coefficients, compare changes after changing ΔX_{1i} (holding X_2 constant):

$$Y_i + \Delta Y_i = \beta_0 + \beta_1 (X_1 + \Delta X_{1i}) \beta_2 X_{2i} + \beta_3 ((X_{1i} + \Delta X_{1i}) \times X_{2i})$$

• Take the difference to get:

$$\Delta Y_i = \beta_1 \Delta X_{1i} + \beta_3 X_{2i} \Delta X_{1i}$$
$$\frac{\Delta Y_i}{\Delta X_{1i}} = \beta_1 + \beta_3 X_{2i}$$

- The effect of $X_1 \to Y$ depends on the value of X_2
 - β_3 : increment to the effect of $X_1 \to Y$ for every 1 unit change in X_2

Continuous Variables Interaction: Example

\bigcirc

Example

Do education and experience interact in their determination of wages?

$$\widehat{\text{wage}}_i = \hat{\beta}_0 + \hat{\beta}_1 \text{ education}_i + \hat{\beta}_2 \text{ experience}_i + \hat{\beta}_3 \text{ (education}_i \times \text{ experience}_i)$$

• Estimated effect of education on wages depends on the amount of experience (and vice versa)!

$$\frac{\Delta \text{wage}}{\Delta \text{education}} = \hat{\beta}_1 + \beta_3 \text{ experience}_i$$

$$\frac{\Delta \text{wage}}{\Delta \text{experience}} = \hat{\beta}_2 + \beta_3 \text{ education}_i$$

• This is a type of nonlinearity (we will examine nonlinearities next lesson)

Continuous Variables Interaction: In R I

1 reg_cont <- lm(wage ~ educ + exper + educ:exper, data = wages)</pre> 2 reg_cont %>% tidy() estimate std.error term <dbl> <dbl> <chr> (Intercept) -2.859915627 1.181079647 educ 0.601735470 0.089899977 0.045768911 0.042613758 exper 0.002062345 0.003490614 educ:exper 4 rows | 1-3 of 5 columns

Continuous Variables Interaction: In R II

► Code

	Wage
Constant	-2.86**
	(1.18)
educ	0.60***
	(0.09)
exper	0.05
	(0.04)
educ:exper	0.00
	(0.00)
n	526
Adj. R ²	0.22
SER	3.25
* p < 0.1, ** p < 0.	05, *** p < 0.01

Continuous Variables Interaction: Marginal Effects

 $\widehat{\text{wage}}_i = -2.860 + 0.602 \text{ education}_i + 0.047 \text{ experience}_i + 0.002 \text{ (education}_i \times \text{ experience}_i$

Marginal Effect of *Education* on Wages by Years of *Experience*:

Experience	$\frac{\Delta \text{wage}}{\Delta \text{education}} = \hat{\beta}_1 + \hat{\beta}_3 \text{ experience}$
	Δ education = $p_1 + p_3$ experience
5 years	0.602 + 0.002(5) = 0.612
10 years	0.602 + 0.002(10) = 0.622
15 years	0.602 + 0.002(15) = 0.632

Marginal effect of education → wages increases with more experience

Continuous Variables Interaction: Marginal Effects

 $\widehat{\text{wage}}_i = -2.860 + 0.602 \text{ education}_i + 0.047 \text{ experience}_i + 0.002 \text{ (education}_i \times \text{ experience}_i$

Marginal Effect of Experience on Wages by Years of Education:

Education	$\frac{\Delta \text{wage}}{} = \hat{\beta}_2 + \hat{\beta}_3 \text{ education}$
	Δ experience $-p_2 + p_3$ Education
5 years	0.047 + 0.002(5) = 0.057
10 years	0.047 + 0.002(10) = 0.067
15 years	0.047 + 0.002(15) = 0.077

- Marginal effect of experience → wages increases with more education
- If you want to estimate the marginal effects more precisely, and graph them, see the appendix in today's appendix

