2.4 — Goodness of Fit and Bias
ECON 480 • Econometrics • Fall 2022
Dr. Ryan Safner
Associate Professor of Economics
safner@hood.edu
ryansafner/metricsF22
metricsF22.classes.ryansafner.com
\[\begin{align*} \color{#0047AB}{Y_i} &= \color{#047806}{\hat{Y}_i} + \color{#D7250E}{\hat{u}_i} \\ \color{#0047AB}{\text{Observed}_i} &= \color{#047806}{\text{Model}_i} + \color{#D7250E}{\text{Error}_i} \\ \end{align*}\]
“All models are wrong. But some are useful. — George Box”
How well does a line fit data? How tightly clustered around the line are the data points?
Quantify how much variation in \(\color{#0047AB}{Y_i}\) is “explained” by the model, \(\color{#047806}{\hat{Y}_i}\)
\[\underbrace{\color{#0047AB}{Y_i}}_{\color{#0047AB}{Observed}}=\underbrace{\color{#047806}{\hat{Y}_i}}_{\color{#047806}{Model}}+\underbrace{\color{#D7250E}{\hat{u}_i}}_{\color{#D7250E}{Error}}\]
\[R^2 = \frac{var(\color{#047806}{\hat{Y}_i})}{var(\color{#0047AB}{Y_i})}\]
\[R^2 = \frac{\color{#047806}{SSM}}{\color{#0047AB}{SST}}\]
\[\color{#047806}{SSM} = \sum^n_{i=1}(\hat{Y_i}-\bar{Y})^2\]
\[\color{#0047AB}{SST} = \sum^n_{i=1}(Y_i-\bar{Y})^2\]
\[R^2=1-\left(\frac{\color{#D7250E}{SSR}}{\color{#0047AB}{SST}}\right)\]
\[R^2=(r_{X,Y})^2\]
\[SST = \sum^n_{i=1}(Y_i-\bar{Y})^2\]
\[\color{#047806}{SSM} = \sum^n_{i=1}(\hat{Y_i}-\bar{Y})^2\]
\[\color{#D7250E}{SSR} = \sum^n_{i=1}(\hat{u_i})^2\]
\[R^2 = \frac{SSM}{SST} = \frac{\color{purple}{C}}{\color{red}{A}+\color{purple}{C}}\]
# make a function to calc. sum of sq. devs
sum_sq <- function(x){sum((x - mean(x))^2)}
# find total sum of squares
SST <- school_reg %>%
augment() %>%
summarize(SST = sum_sq(testscr))
# find explained sum of squares
SSM <- school_reg %>%
augment() %>%
summarize(SSM = sum_sq(.fitted))
# look at them and divide to get R^2
tribble(
~SSM, ~SST, ~R_sq,
SSM, SST, SSM/SST
) %>%
knitr::kable()
SSM | SST | R_sq |
---|---|---|
7794.11 | 152109.6 | 0.0512401 |
\[R^2 = \frac{SSM}{SST} = \frac{\color{purple}{C}}{\color{red}{A}+\color{purple}{C}}=0.05\]
R
Ibroom
’s augment()
command makes a lot of new regression-based values like:
.fitted
: predicted values \((\hat{Y_i})\).resid
: residuals \((\hat{u_i})\)testscr | str | .fitted | .resid | .hat | .sigma | .cooksd | .std.resid |
---|---|---|---|---|---|---|---|
690.80 | 17.88991 | 658.1474 | 32.6526000 | 0.0044244 | 18.53408 | 0.0068925 | 1.7612148 |
661.20 | 21.52466 | 649.8608 | 11.3391671 | 0.0047485 | 18.59490 | 0.0008927 | 0.6117112 |
643.60 | 18.69723 | 656.3069 | -12.7068869 | 0.0029742 | 18.59279 | 0.0006996 | -0.6848850 |
647.70 | 17.35714 | 659.3620 | -11.6619808 | 0.0058575 | 18.59441 | 0.0011673 | -0.6294767 |
640.85 | 18.67133 | 656.3659 | -15.5159250 | 0.0030072 | 18.58766 | 0.0010548 | -0.8363024 |
605.55 | 21.40625 | 650.1308 | -44.5807574 | 0.0044603 | 18.47411 | 0.0129531 | -2.4046387 |
606.75 | 19.50000 | 654.4767 | -47.7266907 | 0.0023941 | 18.45548 | 0.0079356 | -2.5716597 |
609.00 | 20.89412 | 651.2984 | -42.2983704 | 0.0034291 | 18.48716 | 0.0089463 | -2.2803484 |
612.50 | 19.94737 | 653.4568 | -40.9567760 | 0.0024438 | 18.49453 | 0.0059658 | -2.2069310 |
612.65 | 20.80556 | 651.5003 | -38.8502504 | 0.0032862 | 18.50537 | 0.0072306 | -2.0943066 |
615.75 | 21.23809 | 650.5142 | -34.7641689 | 0.0040831 | 18.52485 | 0.0072052 | -1.8747872 |
616.30 | 21.00000 | 651.0570 | -34.7569905 | 0.0036136 | 18.52492 | 0.0063680 | -1.8739584 |
616.30 | 20.60000 | 651.9689 | -35.6689130 | 0.0029950 | 18.52080 | 0.0055515 | -1.9225289 |
616.30 | 20.00822 | 653.3181 | -37.0180659 | 0.0024712 | 18.51448 | 0.0049285 | -1.9947233 |
616.45 | 18.02778 | 657.8331 | -41.3830610 | 0.0041152 | 18.49207 | 0.0102908 | -2.2317715 |
617.35 | 20.25196 | 652.7624 | -35.4123888 | 0.0026303 | 18.52202 | 0.0048022 | -1.9083535 |
618.05 | 16.97787 | 660.2267 | -42.1766170 | 0.0071084 | 18.48740 | 0.0185757 | -2.2779936 |
618.30 | 16.50980 | 661.2938 | -42.9937160 | 0.0089166 | 18.48263 | 0.0243010 | -2.3242432 |
619.80 | 22.70402 | 647.1721 | -27.3721439 | 0.0086398 | 18.55446 | 0.0095387 | -1.4795333 |
620.30 | 19.91111 | 653.5394 | -33.2394468 | 0.0024298 | 18.53171 | 0.0039069 | -1.7910748 |
620.50 | 18.33333 | 657.1365 | -36.6364656 | 0.0035203 | 18.51621 | 0.0068913 | -1.9751997 |
621.40 | 22.61905 | 647.3659 | -25.9658367 | 0.0082974 | 18.55936 | 0.0082379 | -1.4032766 |
621.75 | 19.44828 | 654.5946 | -32.8446103 | 0.0024056 | 18.53340 | 0.0037763 | -1.7697780 |
622.05 | 25.05263 | 641.8178 | -19.7677069 | 0.0219144 | 18.57747 | 0.0129635 | -1.0757207 |
622.60 | 20.67544 | 651.7969 | -29.1969420 | 0.0030953 | 18.54804 | 0.0038451 | -1.5737735 |
623.10 | 18.68235 | 656.3408 | -33.2407957 | 0.0029931 | 18.53166 | 0.0048183 | -1.7916534 |
623.20 | 22.84553 | 646.8495 | -23.6495125 | 0.0092313 | 18.56681 | 0.0076172 | -1.2786973 |
623.45 | 19.26667 | 655.0086 | -31.5586344 | 0.0024741 | 18.53877 | 0.0035862 | -1.7005437 |
623.60 | 19.25000 | 655.0466 | -31.4466672 | 0.0024826 | 18.53923 | 0.0035731 | -1.6945175 |
624.15 | 20.54545 | 652.0933 | -27.9432316 | 0.0029272 | 18.55269 | 0.0033295 | -1.5060690 |
624.55 | 20.60697 | 651.9530 | -27.4029716 | 0.0030039 | 18.55462 | 0.0032865 | -1.4770072 |
624.95 | 21.07268 | 650.8913 | -25.9412664 | 0.0037489 | 18.55965 | 0.0036811 | -1.3987447 |
625.30 | 21.53581 | 649.8354 | -24.5354367 | 0.0047766 | 18.56421 | 0.0042044 | -1.3236257 |
625.85 | 19.90400 | 653.5556 | -27.7056741 | 0.0024273 | 18.55357 | 0.0027114 | -1.4928911 |
626.10 | 21.19407 | 650.6145 | -24.5145628 | 0.0039906 | 18.56430 | 0.0035010 | -1.3219776 |
626.80 | 21.86535 | 649.0841 | -22.2840870 | 0.0056821 | 18.57102 | 0.0041331 | -1.2027182 |
626.90 | 18.32965 | 657.1449 | -30.2448510 | 0.0035267 | 18.54397 | 0.0047052 | -1.6306107 |
627.10 | 16.22857 | 661.9349 | -34.8349462 | 0.0101436 | 18.52405 | 0.0181933 | -1.8843463 |
627.25 | 19.17857 | 655.2095 | -27.9594856 | 0.0025232 | 18.55265 | 0.0028710 | -1.5066399 |
627.30 | 20.27737 | 652.7044 | -25.4044560 | 0.0026515 | 18.56148 | 0.0024914 | -1.3690462 |
628.25 | 22.98614 | 646.5290 | -18.2789658 | 0.0098456 | 18.58147 | 0.0048593 | -0.9886255 |
628.40 | 20.44444 | 652.3235 | -23.9235136 | 0.0028120 | 18.56620 | 0.0023440 | -1.2893420 |
628.55 | 19.82085 | 653.7452 | -25.1951733 | 0.0024027 | 18.56217 | 0.0022195 | -1.3575986 |
628.65 | 23.20522 | 646.0295 | -17.3794680 | 0.0108552 | 18.58354 | 0.0048531 | -0.9404554 |
628.75 | 19.26697 | 655.0080 | -26.2579595 | 0.0024740 | 18.55863 | 0.0024826 | -1.4149156 |
629.80 | 23.30189 | 645.8091 | -16.0090672 | 0.0113210 | 18.58652 | 0.0042987 | -0.8665030 |
630.35 | 21.18829 | 650.6277 | -20.2777471 | 0.0039786 | 18.57661 | 0.0023882 | -1.0934956 |
630.40 | 20.87180 | 651.3493 | -20.9492352 | 0.0033921 | 18.57483 | 0.0021706 | -1.1293737 |
630.55 | 19.01749 | 655.5767 | -25.0267237 | 0.0026397 | 18.56271 | 0.0024071 | -1.3486822 |
630.55 | 21.91938 | 648.9610 | -18.4109799 | 0.0058443 | 18.58124 | 0.0029028 | -0.9937597 |
631.05 | 20.10124 | 653.1060 | -22.0559340 | 0.0025226 | 18.57177 | 0.0017862 | -1.1885175 |
631.40 | 21.47651 | 649.9706 | -18.5706002 | 0.0046291 | 18.58089 | 0.0023335 | -1.0017633 |
631.85 | 20.06579 | 653.1868 | -21.3368264 | 0.0025016 | 18.57379 | 0.0016576 | -1.1497552 |
631.90 | 20.37510 | 652.4816 | -20.5816166 | 0.0027409 | 18.57584 | 0.0016907 | -1.1091931 |
631.95 | 22.44648 | 647.7593 | -15.8092651 | 0.0076317 | 18.58699 | 0.0028050 | -0.8540965 |
632.00 | 22.89524 | 646.7362 | -14.7361970 | 0.0094455 | 18.58910 | 0.0030274 | -0.7968524 |
632.20 | 20.49797 | 652.2015 | -20.0014969 | 0.0028713 | 18.57736 | 0.0016732 | -1.0779995 |
632.25 | 20.00000 | 653.3368 | -21.0867866 | 0.0024672 | 18.57448 | 0.0015966 | -1.1362620 |
632.45 | 22.25658 | 648.1922 | -15.7422648 | 0.0069451 | 18.58714 | 0.0025275 | -0.8501827 |
632.85 | 21.56436 | 649.7703 | -16.9203622 | 0.0048493 | 18.58468 | 0.0020303 | -0.9128447 |
632.95 | 19.47737 | 654.5283 | -21.5782678 | 0.0023987 | 18.57313 | 0.0016253 | -1.1627056 |
633.05 | 17.67002 | 658.6487 | -25.5987041 | 0.0049700 | 18.56074 | 0.0047638 | -1.3811205 |
633.15 | 21.94756 | 648.8967 | -15.7466959 | 0.0059305 | 18.58715 | 0.0021551 | -0.8499879 |
633.65 | 21.78339 | 649.2710 | -15.6209661 | 0.0054434 | 18.58741 | 0.0019447 | -0.8429946 |
633.90 | 19.14000 | 655.2974 | -21.3973987 | 0.0025479 | 18.57362 | 0.0016981 | -1.1530460 |
634.00 | 18.11050 | 657.6445 | -23.6444923 | 0.0039418 | 18.56702 | 0.0032168 | -1.2750268 |
634.05 | 20.68242 | 651.7810 | -17.7309406 | 0.0031050 | 18.58290 | 0.0014225 | -0.9557378 |
634.10 | 22.62361 | 647.3555 | -13.2554886 | 0.0083155 | 18.59181 | 0.0021516 | -0.7163754 |
634.10 | 21.78650 | 649.2639 | -15.1639357 | 0.0054522 | 18.58833 | 0.0018356 | -0.8183344 |
634.15 | 18.58293 | 656.5674 | -22.4174066 | 0.0031267 | 18.57071 | 0.0022899 | -1.2083620 |
634.20 | 21.54545 | 649.8134 | -15.6134965 | 0.0048011 | 18.58744 | 0.0017114 | -0.8423196 |
634.40 | 21.15289 | 650.7084 | -16.3083914 | 0.0039064 | 18.58602 | 0.0015165 | -0.8794127 |
634.55 | 16.63333 | 661.0121 | -26.4621537 | 0.0084110 | 18.55766 | 0.0086750 | -1.4301811 |
634.70 | 21.14438 | 650.7278 | -16.0278017 | 0.0038893 | 18.58660 | 0.0014583 | -0.8642748 |
634.90 | 19.78182 | 653.8342 | -18.9341744 | 0.0023943 | 18.58006 | 0.0012491 | -1.0202312 |
634.95 | 18.98373 | 655.6537 | -20.7037398 | 0.0026685 | 18.57551 | 0.0016654 | -1.1157341 |
635.05 | 17.66767 | 658.6541 | -23.6040700 | 0.0049762 | 18.56711 | 0.0040554 | -1.2735085 |
635.20 | 17.75499 | 658.4550 | -23.2550243 | 0.0047515 | 18.56818 | 0.0037570 | -1.2545348 |
635.45 | 15.27273 | 664.1141 | -28.6640505 | 0.0151024 | 18.54939 | 0.0185256 | -1.5544390 |
635.60 | 14.00000 | 667.0156 | -31.4156607 | 0.0235965 | 18.53797 | 0.0353765 | -1.7110520 |
635.60 | 20.59613 | 651.9777 | -16.3777393 | 0.0029900 | 18.58589 | 0.0011685 | -0.8827463 |
635.75 | 16.31169 | 661.7454 | -25.9954321 | 0.0097700 | 18.55920 | 0.0097510 | -1.4059202 |
635.95 | 21.12796 | 650.7652 | -14.8152370 | 0.0038565 | 18.58903 | 0.0012354 | -0.7988759 |
636.10 | 17.48801 | 659.0636 | -22.9636613 | 0.0054704 | 18.56903 | 0.0042238 | -1.2392643 |
636.50 | 17.88679 | 658.1545 | -21.6544931 | 0.0044317 | 18.57285 | 0.0030364 | -1.1680036 |
636.60 | 19.30676 | 654.9172 | -18.3172679 | 0.0024552 | 18.58154 | 0.0011989 | -0.9870205 |
636.70 | 20.89231 | 651.3025 | -14.6025459 | 0.0034261 | 18.58944 | 0.0010653 | -0.7872370 |
636.90 | 21.28684 | 650.4030 | -13.5030170 | 0.0041886 | 18.59143 | 0.0011153 | -0.7282390 |
636.95 | 20.19560 | 652.8909 | -15.9408471 | 0.0025865 | 18.58681 | 0.0009568 | -0.8590243 |
637.00 | 24.95000 | 642.0517 | -5.0517338 | 0.0211806 | 18.60155 | 0.0008170 | -0.2748026 |
637.10 | 18.13043 | 657.5990 | -20.4990630 | 0.0039014 | 18.57602 | 0.0023929 | -1.1053874 |
637.35 | 20.00000 | 653.3368 | -15.9868110 | 0.0024672 | 18.58671 | 0.0009177 | -0.8614497 |
637.65 | 18.72951 | 656.2333 | -18.5832373 | 0.0029343 | 18.58090 | 0.0014762 | -1.0015927 |
637.95 | 18.25000 | 657.3265 | -19.3764999 | 0.0036702 | 18.57893 | 0.0020103 | -1.0447333 |
637.95 | 18.99257 | 655.6335 | -17.6835240 | 0.0026608 | 18.58301 | 0.0012114 | -0.9529696 |
638.00 | 19.88764 | 653.5929 | -15.5929415 | 0.0024217 | 18.58752 | 0.0008569 | -0.8402069 |
638.20 | 19.37895 | 654.7527 | -16.5526534 | 0.0024265 | 18.58552 | 0.0009675 | -0.8919220 |
638.30 | 20.46259 | 652.2822 | -13.9821316 | 0.0028317 | 18.59059 | 0.0008063 | -0.7535652 |
638.30 | 22.29157 | 648.1124 | -9.8123916 | 0.0070680 | 18.59698 | 0.0009996 | -0.5299645 |
638.35 | 20.70474 | 651.7301 | -13.3801421 | 0.0031363 | 18.59165 | 0.0008183 | -0.7212312 |
638.55 | 19.06005 | 655.4797 | -16.9296980 | 0.0026056 | 18.58470 | 0.0010872 | -0.9123205 |
638.70 | 20.23247 | 652.8068 | -14.1067884 | 0.0026147 | 18.59037 | 0.0007575 | -0.7602008 |
639.25 | 19.69012 | 654.0432 | -14.7932476 | 0.0023826 | 18.58909 | 0.0007587 | -0.7971007 |
639.30 | 20.36254 | 652.5103 | -13.2102177 | 0.0027287 | 18.59195 | 0.0006934 | -0.7119262 |
639.35 | 19.75422 | 653.8971 | -14.5471357 | 0.0023896 | 18.58956 | 0.0007359 | -0.7838423 |
639.50 | 19.37977 | 654.7508 | -15.2508001 | 0.0024263 | 18.58820 | 0.0008212 | -0.8217729 |
639.75 | 22.92351 | 646.6717 | -6.9217452 | 0.0095687 | 18.60012 | 0.0006768 | -0.3743132 |
639.80 | 19.37340 | 654.7653 | -14.9653316 | 0.0024285 | 18.58876 | 0.0007915 | -0.8063916 |
639.85 | 19.15516 | 655.2629 | -15.4128952 | 0.0025380 | 18.58788 | 0.0008776 | -0.8305537 |
639.90 | 21.30000 | 650.3730 | -10.4730131 | 0.0042176 | 18.59613 | 0.0006756 | -0.5648343 |
640.10 | 18.30357 | 657.2043 | -17.1043423 | 0.0035727 | 18.58430 | 0.0015246 | -0.9221791 |
640.15 | 21.07926 | 650.8763 | -10.7262653 | 0.0037615 | 18.59579 | 0.0006315 | -0.5783604 |
640.50 | 18.79121 | 656.0926 | -15.5926000 | 0.0028619 | 18.58751 | 0.0010135 | -0.8403739 |
640.75 | 19.62662 | 654.1880 | -13.4380273 | 0.0023811 | 18.59156 | 0.0006257 | -0.7240772 |
640.90 | 19.59016 | 654.2711 | -13.3711093 | 0.0023826 | 18.59168 | 0.0006199 | -0.7204720 |
641.10 | 20.87187 | 651.3491 | -10.2491101 | 0.0033922 | 18.59644 | 0.0005196 | -0.5525298 |
641.45 | 21.11500 | 650.7948 | -9.3448453 | 0.0038309 | 18.59758 | 0.0004882 | -0.5038918 |
641.45 | 20.08452 | 653.1441 | -11.6941452 | 0.0025125 | 18.59439 | 0.0005001 | -0.6301536 |
641.55 | 19.91049 | 653.5409 | -11.9908687 | 0.0024296 | 18.59394 | 0.0005084 | -0.6461161 |
641.80 | 17.81285 | 658.3231 | -16.5230183 | 0.0046083 | 18.58555 | 0.0018389 | -0.8913003 |
642.20 | 18.13333 | 657.5924 | -15.3924778 | 0.0038956 | 18.58790 | 0.0013471 | -0.8300185 |
642.20 | 19.22221 | 655.1100 | -12.9099823 | 0.0024976 | 18.59246 | 0.0006059 | -0.6956653 |
642.40 | 18.66072 | 656.3901 | -13.9900750 | 0.0030210 | 18.59058 | 0.0008615 | -0.7540649 |
642.75 | 19.60000 | 654.2487 | -11.4987090 | 0.0023820 | 18.59469 | 0.0004583 | -0.6195818 |
643.05 | 19.28384 | 654.9695 | -11.9195015 | 0.0024657 | 18.59405 | 0.0005098 | -0.6422822 |
643.20 | 22.81818 | 646.9119 | -3.7119208 | 0.0091149 | 18.60234 | 0.0001852 | -0.2006868 |
643.25 | 18.80922 | 656.0515 | -12.8015382 | 0.0028417 | 18.59264 | 0.0006783 | -0.6899407 |
643.40 | 21.37363 | 650.2052 | -6.8051436 | 0.0043842 | 18.60024 | 0.0002966 | -0.3670482 |
643.40 | 20.02041 | 653.2903 | -9.8902344 | 0.0024772 | 18.59691 | 0.0003527 | -0.5329382 |
643.50 | 21.49862 | 649.9202 | -6.4202311 | 0.0046835 | 18.60056 | 0.0002822 | -0.3463393 |
643.50 | 15.42857 | 663.7588 | -20.2587667 | 0.0142107 | 18.57638 | 0.0086918 | -1.0981272 |
643.70 | 22.40000 | 647.8652 | -4.1652964 | 0.0074592 | 18.60211 | 0.0001902 | -0.2250108 |
643.70 | 20.12709 | 653.0471 | -9.3470412 | 0.0025389 | 18.59759 | 0.0003229 | -0.5036836 |
644.20 | 19.03798 | 655.5300 | -11.3300673 | 0.0026230 | 18.59494 | 0.0004902 | -0.6105686 |
644.20 | 17.34216 | 659.3962 | -15.1961460 | 0.0059033 | 18.58826 | 0.0019977 | -0.8202586 |
644.40 | 17.01863 | 660.1337 | -15.7337076 | 0.0069648 | 18.58716 | 0.0025321 | -0.8497290 |
644.45 | 20.80000 | 651.5129 | -7.0629295 | 0.0032776 | 18.60001 | 0.0002383 | -0.3807408 |
644.45 | 21.15385 | 650.7062 | -6.2562250 | 0.0039083 | 18.60070 | 0.0002233 | -0.3373606 |
644.50 | 18.45833 | 656.8515 | -12.3514896 | 0.0033128 | 18.59337 | 0.0007368 | -0.6658426 |
644.55 | 19.14082 | 655.2955 | -10.7455612 | 0.0025474 | 18.59577 | 0.0004282 | -0.5790481 |
644.70 | 19.40766 | 654.6872 | -9.9872625 | 0.0024171 | 18.59679 | 0.0003508 | -0.5381504 |
644.95 | 19.56896 | 654.3195 | -9.3694538 | 0.0023844 | 18.59756 | 0.0003046 | -0.5048523 |
645.10 | 21.50120 | 649.9143 | -4.8143634 | 0.0046899 | 18.60173 | 0.0001589 | -0.2597116 |
645.25 | 17.52941 | 658.9693 | -13.7192551 | 0.0053527 | 18.59103 | 0.0014748 | -0.7403339 |
645.55 | 16.43017 | 661.4753 | -15.9253223 | 0.0092534 | 18.58673 | 0.0034625 | -0.8610703 |
645.55 | 19.79654 | 653.8006 | -8.2505891 | 0.0023972 | 18.59883 | 0.0002375 | -0.4445676 |
645.60 | 17.18613 | 659.7519 | -14.1518853 | 0.0063978 | 18.59024 | 0.0018796 | -0.7640815 |
645.75 | 17.61589 | 658.7721 | -13.0220905 | 0.0051142 | 18.59224 | 0.0012689 | -0.7026285 |
645.75 | 20.12537 | 653.0510 | -7.3009626 | 0.0025378 | 18.59979 | 0.0001969 | -0.3934265 |
646.00 | 22.16667 | 648.3972 | -2.3972034 | 0.0066367 | 18.60286 | 0.0000560 | -0.1294442 |
646.20 | 19.96154 | 653.4245 | -7.2244596 | 0.0024497 | 18.59986 | 0.0001861 | -0.3892868 |
646.35 | 19.03945 | 655.5267 | -9.1766772 | 0.0026218 | 18.59779 | 0.0003214 | -0.4945238 |
646.40 | 15.22436 | 664.2243 | -17.8243069 | 0.0153857 | 18.58242 | 0.0073020 | -0.9667435 |
646.50 | 21.14475 | 650.7270 | -4.2269747 | 0.0038900 | 18.60208 | 0.0001014 | -0.2279332 |
646.55 | 19.64390 | 654.1486 | -7.5986387 | 0.0023810 | 18.59950 | 0.0002000 | -0.4094351 |
646.70 | 21.04869 | 650.9460 | -4.2459648 | 0.0037035 | 18.60207 | 0.0000974 | -0.2289358 |
646.90 | 20.17544 | 652.9368 | -6.0367973 | 0.0025718 | 18.60088 | 0.0001364 | -0.3253100 |
646.95 | 21.39130 | 650.1649 | -3.2149290 | 0.0044252 | 18.60256 | 0.0000668 | -0.1734068 |
647.05 | 20.00833 | 653.3178 | -6.2678181 | 0.0024712 | 18.60070 | 0.0001413 | -0.3377422 |
647.25 | 20.29137 | 652.6725 | -5.4225136 | 0.0026635 | 18.60133 | 0.0001140 | -0.2922210 |
647.30 | 17.66667 | 658.6563 | -11.3563529 | 0.0049788 | 18.59488 | 0.0009392 | -0.6127092 |
647.60 | 18.22055 | 657.3936 | -9.7936146 | 0.0037254 | 18.59703 | 0.0005213 | -0.5280623 |
647.60 | 20.27100 | 652.7190 | -5.1189788 | 0.0026461 | 18.60154 | 0.0001010 | -0.2758610 |
648.00 | 20.19895 | 652.8832 | -4.8832278 | 0.0025890 | 18.60169 | 0.0000899 | -0.2631489 |
648.20 | 21.38424 | 650.1810 | -1.9809613 | 0.0044088 | 18.60298 | 0.0000253 | -0.1068482 |
648.25 | 20.97368 | 651.1170 | -2.8669730 | 0.0035663 | 18.60270 | 0.0000428 | -0.1545721 |
648.35 | 20.00000 | 653.3368 | -4.9868110 | 0.0024672 | 18.60163 | 0.0000893 | -0.2687144 |
648.70 | 17.15328 | 659.8268 | -11.1267409 | 0.0065060 | 18.59520 | 0.0011818 | -0.6007822 |
648.95 | 22.34977 | 647.9798 | 0.9701931 | 0.0072760 | 18.60317 | 0.0000101 | 0.0524053 |
649.15 | 22.17007 | 648.3894 | 0.7605829 | 0.0066482 | 18.60320 | 0.0000056 | 0.0410702 |
649.30 | 18.18182 | 657.4819 | -8.1818441 | 0.0037997 | 18.59890 | 0.0003712 | -0.4411736 |
649.50 | 18.95714 | 655.7143 | -6.2142988 | 0.0026923 | 18.60074 | 0.0001514 | -0.3348954 |
649.70 | 19.74533 | 653.9174 | -4.2174323 | 0.0023883 | 18.60208 | 0.0000618 | -0.2272475 |
649.85 | 16.42623 | 661.4843 | -11.6343227 | 0.0092702 | 18.59443 | 0.0018514 | -0.6290645 |
650.45 | 16.62540 | 661.0302 | -10.5802839 | 0.0084429 | 18.59596 | 0.0013921 | -0.5718342 |
650.55 | 16.38177 | 661.5857 | -11.0356758 | 0.0094622 | 18.59531 | 0.0017009 | -0.5967536 |
650.60 | 20.07416 | 653.1677 | -2.5677456 | 0.0025064 | 18.60281 | 0.0000241 | -0.1383658 |
650.65 | 17.99544 | 657.9068 | -7.2567670 | 0.0041854 | 18.59982 | 0.0003219 | -0.3913683 |
650.90 | 19.39130 | 654.7245 | -3.8244723 | 0.0024223 | 18.60229 | 0.0000516 | -0.2060772 |
650.90 | 16.42857 | 661.4790 | -10.5789340 | 0.0092602 | 18.59595 | 0.0015290 | -0.5719970 |
651.15 | 16.72949 | 660.7929 | -9.6429060 | 0.0080316 | 18.59719 | 0.0010991 | -0.5210635 |
651.20 | 24.41345 | 643.2750 | 7.9250504 | 0.0175731 | 18.59911 | 0.0016561 | 0.4303121 |
651.35 | 18.26415 | 657.2942 | -5.9442148 | 0.0036441 | 18.60095 | 0.0001878 | -0.3204933 |
651.40 | 18.95504 | 655.7191 | -4.3190663 | 0.0026942 | 18.60203 | 0.0000732 | -0.2327595 |
651.45 | 21.03896 | 650.9682 | 0.4818585 | 0.0036853 | 18.60322 | 0.0000012 | 0.0259808 |
651.80 | 20.74074 | 651.6480 | 0.1520070 | 0.0031883 | 18.60323 | 0.0000001 | 0.0081939 |
651.85 | 18.10000 | 657.6684 | -5.8184459 | 0.0039633 | 18.60104 | 0.0001959 | -0.3137625 |
651.90 | 19.84615 | 653.6875 | -1.7875032 | 0.0024092 | 18.60303 | 0.0000112 | -0.0963169 |
652.00 | 21.60000 | 649.6891 | 2.3109075 | 0.0049416 | 18.60289 | 0.0000386 | 0.1246780 |
652.10 | 22.44242 | 647.7685 | 4.3314405 | 0.0076165 | 18.60201 | 0.0002101 | 0.2340045 |
652.10 | 23.01438 | 646.4646 | 5.6353877 | 0.0099721 | 18.60117 | 0.0004679 | 0.3048118 |
652.30 | 17.74892 | 658.4688 | -6.1688330 | 0.0047668 | 18.60077 | 0.0002652 | -0.3327915 |
652.30 | 18.28664 | 657.2429 | -4.9428697 | 0.0036031 | 18.60165 | 0.0001284 | -0.2664984 |
652.35 | 19.26544 | 655.0114 | -2.6614627 | 0.0024747 | 18.60278 | 0.0000255 | -0.1434135 |
652.40 | 22.66667 | 647.2573 | 5.1427251 | 0.0084881 | 18.60151 | 0.0003307 | 0.2779560 |
652.40 | 19.29412 | 654.9461 | -2.5460401 | 0.0024609 | 18.60281 | 0.0000232 | -0.1371930 |
652.50 | 17.36364 | 659.3472 | -6.8471910 | 0.0058378 | 18.60019 | 0.0004010 | -0.3695860 |
652.85 | 19.82143 | 653.7439 | -0.8939202 | 0.0024028 | 18.60318 | 0.0000028 | -0.0481674 |
653.10 | 20.43378 | 652.3479 | 0.7521214 | 0.0028007 | 18.60320 | 0.0000023 | 0.0405349 |
653.40 | 21.03721 | 650.9721 | 2.4278745 | 0.0036820 | 18.60285 | 0.0000317 | 0.1309058 |
653.50 | 19.92462 | 653.5086 | -0.0086306 | 0.0024348 | 18.60323 | 0.0000000 | -0.0004651 |
653.55 | 19.00986 | 655.5941 | -2.0441346 | 0.0026461 | 18.60296 | 0.0000161 | -0.1101581 |
653.55 | 23.82222 | 644.6229 | 8.9271951 | 0.0140425 | 18.59802 | 0.0016672 | 0.4838576 |
653.70 | 19.36909 | 654.7752 | -1.0751999 | 0.0024300 | 18.60316 | 0.0000041 | -0.0579361 |
653.80 | 19.82857 | 653.7276 | 0.0723767 | 0.0024046 | 18.60323 | 0.0000000 | 0.0038999 |
653.85 | 15.25885 | 664.1457 | -10.2957130 | 0.0151833 | 18.59629 | 0.0024033 | -0.5583550 |
653.95 | 17.16129 | 659.8085 | -5.8585474 | 0.0064795 | 18.60101 | 0.0003263 | -0.3163248 |
654.10 | 21.81333 | 649.2027 | 4.8972418 | 0.0055295 | 18.60168 | 0.0001942 | 0.2642940 |
654.20 | 19.07471 | 655.4463 | -1.2463129 | 0.0025944 | 18.60313 | 0.0000059 | -0.0671619 |
654.20 | 25.78512 | 640.1478 | 14.0521378 | 0.0275595 | 18.59014 | 0.0083342 | 0.7669068 |
654.30 | 18.21261 | 657.4117 | -3.1116961 | 0.0037404 | 18.60261 | 0.0000528 | -0.1677809 |
654.60 | 18.16606 | 657.5178 | -2.9178351 | 0.0038305 | 18.60268 | 0.0000476 | -0.1573352 |
654.85 | 16.97297 | 660.2378 | -5.3878525 | 0.0071258 | 18.60135 | 0.0003039 | -0.2910049 |
654.85 | 21.50087 | 649.9151 | 4.9348930 | 0.0046891 | 18.60166 | 0.0001669 | 0.2662135 |
654.90 | 20.60000 | 651.9689 | 2.9311237 | 0.0029950 | 18.60268 | 0.0000375 | 0.1579855 |
655.05 | 16.99029 | 660.1983 | -5.1483570 | 0.0070644 | 18.60151 | 0.0002750 | -0.2780608 |
655.05 | 20.77954 | 651.5596 | 3.4904750 | 0.0032463 | 18.60245 | 0.0000577 | 0.1881578 |
655.05 | 15.51247 | 663.5675 | -8.5174540 | 0.0137442 | 18.59849 | 0.0014845 | -0.4615797 |
655.20 | 19.88506 | 653.5988 | 1.6011176 | 0.0024209 | 18.60307 | 0.0000090 | 0.0862743 |
655.30 | 21.39882 | 650.1477 | 5.1523100 | 0.0044428 | 18.60151 | 0.0001723 | 0.2779077 |
655.35 | 20.49751 | 652.2026 | 3.1474228 | 0.0028708 | 18.60259 | 0.0000414 | 0.1696333 |
655.35 | 19.36376 | 654.7873 | 0.5626794 | 0.0024320 | 18.60321 | 0.0000011 | 0.0303195 |
655.40 | 17.65957 | 658.6725 | -3.2724836 | 0.0049975 | 18.60254 | 0.0000783 | -0.1765619 |
655.55 | 21.01796 | 651.0160 | 4.5339452 | 0.0036464 | 18.60190 | 0.0001094 | 0.2444563 |
655.70 | 19.05565 | 655.4897 | 0.2102249 | 0.0026090 | 18.60323 | 0.0000002 | 0.0113288 |
655.80 | 22.53846 | 647.5496 | 8.2504072 | 0.0079816 | 18.59881 | 0.0007995 | 0.4458073 |
655.85 | 21.10787 | 650.8111 | 5.0389248 | 0.0038170 | 18.60159 | 0.0001414 | 0.2717065 |
656.40 | 20.05135 | 653.2197 | 3.1803139 | 0.0024936 | 18.60258 | 0.0000367 | 0.1713736 |
656.50 | 14.20176 | 666.5557 | -10.0556550 | 0.0221058 | 18.59657 | 0.0033851 | -0.5472630 |
656.55 | 18.47687 | 656.8092 | -0.2591875 | 0.0032838 | 18.60323 | 0.0000003 | -0.0139720 |
656.65 | 18.63542 | 656.4478 | 0.2022480 | 0.0030545 | 18.60323 | 0.0000002 | 0.0109013 |
656.70 | 20.94595 | 651.1802 | 5.5198006 | 0.0035175 | 18.60126 | 0.0001563 | 0.2975913 |
656.80 | 21.08548 | 650.8621 | 5.9379523 | 0.0037735 | 18.60095 | 0.0001941 | 0.3201764 |
656.80 | 18.69288 | 656.3168 | 0.4832807 | 0.0029797 | 18.60322 | 0.0000010 | 0.0260483 |
657.00 | 20.86808 | 651.3577 | 5.6422654 | 0.0033860 | 18.60117 | 0.0001572 | 0.3041737 |
657.00 | 19.82558 | 653.7344 | 3.2655619 | 0.0024038 | 18.60254 | 0.0000373 | 0.1759593 |
657.15 | 19.75000 | 653.9067 | 3.2432858 | 0.0023890 | 18.60255 | 0.0000366 | 0.1747577 |
657.40 | 19.50000 | 654.4767 | 2.9233337 | 0.0023941 | 18.60268 | 0.0000298 | 0.1575181 |
657.50 | 18.39080 | 657.0054 | 0.4945557 | 0.0034223 | 18.60322 | 0.0000012 | 0.0266619 |
657.55 | 18.78676 | 656.1027 | 1.4473171 | 0.0028669 | 18.60310 | 0.0000087 | 0.0780043 |
657.65 | 19.77018 | 653.8607 | 3.7892917 | 0.0023922 | 18.60231 | 0.0000500 | 0.2041784 |
657.75 | 19.33333 | 654.8567 | 2.8933427 | 0.0024438 | 18.60269 | 0.0000298 | 0.1559060 |
657.80 | 21.46392 | 649.9993 | 7.8006508 | 0.0045983 | 18.59929 | 0.0004090 | 0.4207880 |
657.90 | 23.08492 | 646.3038 | 11.5962704 | 0.0102929 | 18.59447 | 0.0020464 | 0.6273309 |
658.00 | 21.06299 | 650.9134 | 7.0866316 | 0.0037305 | 18.59998 | 0.0002734 | 0.3821053 |
658.35 | 18.68687 | 656.3305 | 2.0195013 | 0.0029873 | 18.60297 | 0.0000178 | 0.1088493 |
658.60 | 20.77024 | 651.5808 | 7.0191773 | 0.0032322 | 18.60005 | 0.0002321 | 0.3783736 |
658.80 | 19.30556 | 654.9200 | 3.8800005 | 0.0024557 | 18.60226 | 0.0000538 | 0.2090727 |
659.05 | 20.13280 | 653.0340 | 6.0160275 | 0.0025426 | 18.60089 | 0.0001340 | 0.3241860 |
659.15 | 20.66964 | 651.8101 | 7.3398790 | 0.0030873 | 18.59975 | 0.0002424 | 0.3956326 |
659.35 | 22.28155 | 648.1353 | 11.2146930 | 0.0070326 | 18.59507 | 0.0012991 | 0.6056916 |
659.40 | 20.60027 | 651.9683 | 7.4317411 | 0.0029953 | 18.59966 | 0.0002410 | 0.4005656 |
659.40 | 20.82734 | 651.4506 | 7.9494125 | 0.0033204 | 18.59915 | 0.0003059 | 0.4285376 |
659.80 | 19.22492 | 655.1038 | 4.6961767 | 0.0024961 | 18.60181 | 0.0000801 | 0.2530573 |
659.90 | 17.65477 | 658.6835 | 1.2165628 | 0.0050102 | 18.60314 | 0.0000108 | 0.0656382 |
660.05 | 17.00000 | 660.1762 | -0.1261626 | 0.0070301 | 18.60323 | 0.0000002 | -0.0068139 |
660.10 | 16.49773 | 661.3213 | -1.2213189 | 0.0089672 | 18.60314 | 0.0000197 | -0.0660263 |
660.20 | 19.78261 | 653.8324 | 6.3675526 | 0.0023944 | 18.60061 | 0.0001413 | 0.3431032 |
660.30 | 22.30216 | 648.0883 | 12.2116809 | 0.0071055 | 18.59355 | 0.0015566 | 0.6595619 |
660.75 | 17.73077 | 658.5102 | 2.2398043 | 0.0048128 | 18.60291 | 0.0000353 | 0.1208341 |
660.95 | 20.44836 | 652.3146 | 8.6353404 | 0.0028162 | 18.59841 | 0.0003059 | 0.4653970 |
661.35 | 20.37169 | 652.4894 | 8.8605813 | 0.0027376 | 18.59816 | 0.0003130 | 0.4775174 |
661.45 | 20.16479 | 652.9611 | 8.4889091 | 0.0025643 | 18.59858 | 0.0002690 | 0.4574473 |
661.60 | 21.61538 | 649.6540 | 11.9459398 | 0.0049820 | 18.59399 | 0.0010400 | 0.6445202 |
661.60 | 20.56143 | 652.0568 | 9.5431374 | 0.0029466 | 18.59735 | 0.0003909 | 0.5143558 |
661.85 | 19.95551 | 653.4382 | 8.4117628 | 0.0024472 | 18.59866 | 0.0002520 | 0.4532635 |
661.85 | 21.18387 | 650.6378 | 11.2121864 | 0.0039695 | 18.59510 | 0.0007285 | 0.6046244 |
661.85 | 18.81042 | 656.0488 | 5.8011813 | 0.0028404 | 18.60106 | 0.0001392 | 0.3126553 |
661.90 | 20.57838 | 652.0182 | 9.8818390 | 0.0029676 | 18.59692 | 0.0004222 | 0.5326168 |
661.90 | 18.32461 | 657.1564 | 4.7436649 | 0.0035355 | 18.60178 | 0.0001160 | 0.2557495 |
661.95 | 18.82063 | 656.0255 | 5.9244818 | 0.0028291 | 18.60096 | 0.0001446 | 0.3192988 |
662.40 | 20.81633 | 651.4757 | 10.9243049 | 0.0033030 | 18.59551 | 0.0005747 | 0.5889032 |
662.40 | 20.00000 | 653.3368 | 9.0632378 | 0.0024672 | 18.59793 | 0.0002949 | 0.4883728 |
662.45 | 19.68182 | 654.0622 | 8.3878317 | 0.0023821 | 18.59869 | 0.0002439 | 0.4519592 |
662.50 | 19.39018 | 654.7271 | 7.7729334 | 0.0024227 | 18.59933 | 0.0002130 | 0.4188354 |
662.55 | 20.92732 | 651.2227 | 11.3273708 | 0.0034853 | 18.59493 | 0.0006522 | 0.6106874 |
662.55 | 19.94437 | 653.4636 | 9.0864284 | 0.0024426 | 18.59790 | 0.0002935 | 0.4896164 |
662.65 | 20.79109 | 651.5332 | 11.1167801 | 0.0032639 | 18.59524 | 0.0005880 | 0.5992673 |
662.70 | 19.20354 | 655.1526 | 7.5474470 | 0.0025082 | 18.59955 | 0.0002080 | 0.4067027 |
662.75 | 19.02439 | 655.5610 | 7.1890123 | 0.0026340 | 18.59989 | 0.0001982 | 0.3874125 |
662.90 | 17.62058 | 658.7614 | 4.1386136 | 0.0051016 | 18.60212 | 0.0001278 | 0.2233043 |
663.35 | 20.23715 | 652.7961 | 10.5538547 | 0.0026184 | 18.59603 | 0.0004246 | 0.5687378 |
663.45 | 19.29374 | 654.9469 | 8.5030256 | 0.0024611 | 18.59856 | 0.0002590 | 0.4581843 |
663.50 | 18.82998 | 656.0042 | 7.4957941 | 0.0028190 | 18.59960 | 0.0002307 | 0.4039823 |
663.85 | 20.33949 | 652.5628 | 11.2871675 | 0.0027068 | 18.59500 | 0.0005021 | 0.6082824 |
663.85 | 19.22900 | 655.0945 | 8.7554483 | 0.0024938 | 18.59828 | 0.0002782 | 0.4717938 |
663.90 | 17.89130 | 658.1442 | 5.7558152 | 0.0044211 | 18.60109 | 0.0002140 | 0.3104565 |
664.00 | 19.51881 | 654.4338 | 9.5661931 | 0.0023908 | 18.59732 | 0.0003184 | 0.5154548 |
664.00 | 19.08451 | 655.4239 | 8.5760649 | 0.0025870 | 18.59848 | 0.0002770 | 0.4621492 |
664.15 | 19.93548 | 653.4839 | 10.6661536 | 0.0024390 | 18.59588 | 0.0004038 | 0.5747378 |
664.15 | 18.87326 | 655.9055 | 8.2444791 | 0.0027734 | 18.59884 | 0.0002745 | 0.4443222 |
664.30 | 20.14178 | 653.0135 | 11.2864431 | 0.0025486 | 18.59500 | 0.0004726 | 0.6081951 |
664.40 | 23.55637 | 645.2289 | 19.1710835 | 0.0126069 | 18.57923 | 0.0068826 | 1.0383250 |
664.45 | 21.46479 | 649.9973 | 14.4526014 | 0.0046004 | 18.58970 | 0.0014045 | 0.7796128 |
664.70 | 19.19101 | 655.1811 | 9.5188868 | 0.0025156 | 18.59738 | 0.0003318 | 0.5129379 |
664.75 | 20.13080 | 653.0386 | 11.7114129 | 0.0025413 | 18.59437 | 0.0005074 | 0.6310932 |
664.95 | 25.80000 | 640.1139 | 24.8360509 | 0.0276816 | 18.56230 | 0.0261561 | 1.3555326 |
664.95 | 18.77774 | 656.1233 | 8.8267082 | 0.0028772 | 18.59820 | 0.0003265 | 0.4757252 |
665.10 | 19.10982 | 655.3662 | 9.7337392 | 0.0025687 | 18.59711 | 0.0003543 | 0.5245295 |
665.20 | 19.70109 | 654.0183 | 11.1817591 | 0.0023834 | 18.59515 | 0.0004336 | 0.6025041 |
665.35 | 18.61594 | 656.4922 | 8.8578021 | 0.0030809 | 18.59816 | 0.0003522 | 0.4774498 |
665.65 | 20.99721 | 651.0633 | 14.5866888 | 0.0036085 | 18.58946 | 0.0011200 | 0.7864541 |
665.90 | 20.00000 | 653.3368 | 12.5632378 | 0.0024672 | 18.59303 | 0.0005667 | 0.6769704 |
665.95 | 20.98325 | 651.0952 | 14.8548507 | 0.0035834 | 18.58895 | 0.0011534 | 0.8009022 |
666.00 | 21.64262 | 649.5919 | 16.4080810 | 0.0050542 | 18.58578 | 0.0019907 | 0.8852986 |
666.05 | 20.02967 | 653.2691 | 12.7809101 | 0.0024820 | 18.59268 | 0.0005901 | 0.6887048 |
666.10 | 19.81140 | 653.7668 | 12.3332116 | 0.0024004 | 18.59340 | 0.0005313 | 0.6645532 |
666.15 | 18.00000 | 657.8964 | 8.2536213 | 0.0041755 | 18.59882 | 0.0004154 | 0.4451279 |
666.15 | 19.35811 | 654.8002 | 11.3498483 | 0.0024341 | 18.59491 | 0.0004563 | 0.6115767 |
666.45 | 20.17912 | 652.9284 | 13.5215262 | 0.0025745 | 18.59142 | 0.0006852 | 0.7286469 |
666.55 | 21.11986 | 650.7837 | 15.7663364 | 0.0038405 | 18.58714 | 0.0013932 | 0.8501548 |
666.60 | 23.38974 | 645.6088 | 20.9911376 | 0.0117551 | 18.57447 | 0.0076807 | 1.1364108 |
666.65 | 22.18182 | 648.3627 | 18.2873646 | 0.0066879 | 18.58152 | 0.0032829 | 0.9875065 |
666.65 | 19.94283 | 653.4671 | 13.1828949 | 0.0024419 | 18.59200 | 0.0006176 | 0.7103516 |
666.70 | 17.78826 | 658.3791 | 8.3208116 | 0.0046686 | 18.59875 | 0.0004725 | 0.4488627 |
666.85 | 14.70588 | 665.4064 | 1.4436151 | 0.0186186 | 18.60310 | 0.0000583 | 0.0784267 |
666.85 | 19.04077 | 655.5237 | 11.3263232 | 0.0026207 | 18.59494 | 0.0004895 | 0.6103662 |
667.15 | 20.89195 | 651.3033 | 15.8467229 | 0.0034255 | 18.58699 | 0.0012543 | 0.8543115 |
667.20 | 19.83851 | 653.7050 | 13.4949908 | 0.0024071 | 18.59146 | 0.0006379 | 0.7271560 |
667.45 | 19.52191 | 654.4267 | 13.0232758 | 0.0023903 | 18.59227 | 0.0005899 | 0.7017325 |
667.45 | 20.68622 | 651.7723 | 15.6776717 | 0.0031103 | 18.58734 | 0.0011140 | 0.8450642 |
667.60 | 18.18182 | 657.4819 | 10.1180826 | 0.0037997 | 18.59661 | 0.0005677 | 0.5455776 |
668.00 | 18.89224 | 655.8623 | 12.1377385 | 0.0027542 | 18.59371 | 0.0005909 | 0.6541365 |
668.10 | 24.88889 | 642.1911 | 25.9089194 | 0.0207503 | 18.55900 | 0.0210363 | 1.4090755 |
668.40 | 18.58064 | 656.5726 | 11.8273796 | 0.0031299 | 18.59419 | 0.0006381 | 0.6375305 |
668.60 | 18.04000 | 657.8052 | 10.7947668 | 0.0040890 | 18.59569 | 0.0006957 | 0.5821497 |
668.65 | 17.73399 | 658.5029 | 10.1471688 | 0.0048046 | 18.59656 | 0.0007234 | 0.5474222 |
668.80 | 21.45455 | 650.0207 | 18.7792872 | 0.0045756 | 18.58038 | 0.0023584 | 1.0129934 |
668.90 | 19.92343 | 653.5114 | 15.3886630 | 0.0024344 | 18.58793 | 0.0008390 | 0.8292048 |
668.95 | 20.33942 | 652.5630 | 16.3870389 | 0.0027068 | 18.58587 | 0.0010584 | 0.8831220 |
669.10 | 22.54608 | 647.5322 | 21.5677538 | 0.0080111 | 18.57299 | 0.0054843 | 1.1654219 |
669.30 | 21.10344 | 650.8211 | 18.4789011 | 0.0038083 | 18.58113 | 0.0018977 | 0.9964061 |
669.30 | 18.19743 | 657.4463 | 11.8537387 | 0.0037695 | 18.59414 | 0.0007729 | 0.6391564 |
669.35 | 20.10768 | 653.0913 | 16.2586817 | 0.0025265 | 18.58614 | 0.0009721 | 0.8761255 |
669.35 | 19.15984 | 655.2522 | 14.0977757 | 0.0025350 | 18.59039 | 0.0007334 | 0.7596848 |
669.80 | 19.54545 | 654.3731 | 15.4269235 | 0.0023870 | 18.58785 | 0.0008266 | 0.8312467 |
669.85 | 20.88889 | 651.3103 | 18.5396862 | 0.0034204 | 18.58099 | 0.0017143 | 0.9994891 |
669.95 | 18.39150 | 657.0039 | 12.9461594 | 0.0034211 | 18.59239 | 0.0008361 | 0.6979379 |
670.00 | 19.17990 | 655.2065 | 14.7935495 | 0.0025224 | 18.58909 | 0.0008035 | 0.7971728 |
670.70 | 19.39771 | 654.7099 | 15.9900520 | 0.0024202 | 18.58671 | 0.0009005 | 0.8616041 |
671.25 | 21.67827 | 649.5106 | 21.7393524 | 0.0051503 | 18.57259 | 0.0035616 | 1.1730041 |
671.30 | 19.28889 | 654.9580 | 16.3420043 | 0.0024634 | 18.58597 | 0.0009574 | 0.8805876 |
671.60 | 20.34927 | 652.5405 | 19.0594660 | 0.0027160 | 18.57974 | 0.0014366 | 1.0271479 |
671.60 | 20.96416 | 651.1387 | 20.4612911 | 0.0035495 | 18.57613 | 0.0021675 | 1.1031558 |
671.65 | 19.46039 | 654.5670 | 17.0830307 | 0.0024026 | 18.58437 | 0.0010203 | 0.9204897 |
671.70 | 19.28572 | 654.9652 | 16.7347320 | 0.0024649 | 18.58513 | 0.0010046 | 0.9017504 |
671.75 | 20.91979 | 651.2398 | 20.5101676 | 0.0034724 | 18.57601 | 0.0021302 | 1.1057482 |
671.90 | 20.90021 | 651.2845 | 20.6155514 | 0.0034393 | 18.57573 | 0.0021315 | 1.1114112 |
671.90 | 20.59575 | 651.9786 | 19.9214224 | 0.0029895 | 18.57756 | 0.0017285 | 1.0737475 |
671.95 | 19.37500 | 654.7617 | 17.1882844 | 0.0024279 | 18.58414 | 0.0010439 | 0.9261729 |
672.05 | 19.95122 | 653.4480 | 18.6019998 | 0.0024454 | 18.58086 | 0.0012315 | 1.0023582 |
672.05 | 18.84973 | 655.9592 | 16.0908748 | 0.0027979 | 18.58649 | 0.0010550 | 0.8672009 |
672.30 | 18.11787 | 657.6277 | 14.6723064 | 0.0039268 | 18.58930 | 0.0012339 | 0.7911967 |
672.35 | 19.18341 | 655.1985 | 17.1515175 | 0.0025202 | 18.58422 | 0.0010791 | 0.9242345 |
672.45 | 22.00000 | 648.7772 | 23.6728422 | 0.0060937 | 18.56686 | 0.0050064 | 1.2779368 |
672.55 | 21.58416 | 649.7252 | 22.8248386 | 0.0049004 | 18.56946 | 0.0037338 | 1.2314197 |
672.70 | 20.38889 | 652.4502 | 20.2497577 | 0.0027545 | 18.57671 | 0.0016448 | 1.0913159 |
673.05 | 16.29310 | 661.7878 | 11.2621850 | 0.0098528 | 18.59498 | 0.0018460 | 0.6091222 |
673.25 | 18.27778 | 657.2631 | 15.9868875 | 0.0036192 | 18.58669 | 0.0013493 | 0.8619517 |
673.30 | 19.37472 | 654.7623 | 18.5376731 | 0.0024280 | 18.58102 | 0.0012143 | 0.9988834 |
673.55 | 18.90909 | 655.8239 | 17.7261356 | 0.0027376 | 18.58291 | 0.0012526 | 0.9553027 |
673.55 | 16.40693 | 661.5283 | 12.0216795 | 0.0093532 | 18.59383 | 0.0019948 | 0.6500360 |
673.90 | 15.59140 | 663.3876 | 10.5124688 | 0.0133138 | 18.59601 | 0.0021887 | 0.5695697 |
674.25 | 18.70694 | 656.2847 | 17.9652882 | 0.0029620 | 18.58236 | 0.0013927 | 0.9683002 |
675.40 | 18.32985 | 657.1444 | 18.2556230 | 0.0035263 | 18.58166 | 0.0017140 | 0.9842273 |
675.70 | 17.90235 | 658.1190 | 17.5809889 | 0.0043954 | 18.58321 | 0.0019849 | 0.9482690 |
676.15 | 18.91157 | 655.8182 | 20.3318165 | 0.0027352 | 18.57650 | 0.0016465 | 1.0957276 |
676.55 | 20.32497 | 652.5959 | 23.9540624 | 0.0026934 | 18.56611 | 0.0022503 | 1.2909116 |
676.60 | 20.02457 | 653.2808 | 23.3192006 | 0.0024794 | 18.56806 | 0.0019623 | 1.2565634 |
676.85 | 24.00000 | 644.2176 | 32.6324221 | 0.0150551 | 18.53342 | 0.0239327 | 1.7695996 |
676.95 | 17.60784 | 658.7904 | 18.1595061 | 0.0051360 | 18.58186 | 0.0024782 | 0.9798370 |
677.25 | 19.34853 | 654.8220 | 22.4279950 | 0.0024378 | 18.57070 | 0.0017845 | 1.2085152 |
677.95 | 19.67846 | 654.0698 | 23.8801872 | 0.0023819 | 18.56635 | 0.0019765 | 1.2867295 |
678.05 | 18.72861 | 656.2353 | 21.8147260 | 0.0029354 | 18.57245 | 0.0020349 | 1.1757630 |
678.40 | 15.88235 | 662.7242 | 15.6757917 | 0.0117990 | 18.58720 | 0.0042998 | 0.8486693 |
678.80 | 20.05491 | 653.2116 | 25.5883913 | 0.0024955 | 18.56088 | 0.0023782 | 1.3788507 |
679.40 | 17.98825 | 657.9232 | 21.4768395 | 0.0042012 | 18.57335 | 0.0028301 | 1.1582872 |
679.50 | 16.96629 | 660.2531 | 19.2469438 | 0.0071496 | 18.57917 | 0.0038911 | 1.0395648 |
679.65 | 19.23937 | 655.0709 | 24.5791567 | 0.0024882 | 18.56416 | 0.0021879 | 1.3244624 |
679.75 | 19.19586 | 655.1701 | 24.5799238 | 0.0025127 | 18.56415 | 0.0022097 | 1.3245200 |
679.80 | 19.59906 | 654.2508 | 25.5492004 | 0.0023821 | 18.56101 | 0.0022627 | 1.3766606 |
680.05 | 20.54348 | 652.0978 | 27.9522879 | 0.0029248 | 18.55266 | 0.0033289 | 1.5065553 |
680.45 | 18.58848 | 656.5548 | 23.8952393 | 0.0031189 | 18.56628 | 0.0025952 | 1.2880163 |
681.30 | 15.60419 | 663.3584 | 17.9415882 | 0.0132448 | 18.58220 | 0.0063414 | 0.9720483 |
681.30 | 15.29304 | 664.0678 | 17.2322354 | 0.0149843 | 18.58379 | 0.0066415 | 0.9344406 |
681.60 | 17.65537 | 658.6821 | 22.9178750 | 0.0050087 | 18.56918 | 0.0038483 | 1.2365064 |
681.90 | 17.57976 | 658.8545 | 23.0455580 | 0.0052126 | 18.56879 | 0.0040514 | 1.2435229 |
682.15 | 22.33333 | 648.0172 | 34.1327919 | 0.0072168 | 18.52744 | 0.0123542 | 1.8436407 |
682.45 | 18.75000 | 656.1865 | 26.2634653 | 0.0029097 | 18.55859 | 0.0029236 | 1.4155214 |
682.55 | 18.10241 | 657.6629 | 24.8870583 | 0.0039584 | 18.56311 | 0.0035789 | 1.3420432 |
682.65 | 20.25641 | 652.7522 | 29.8978048 | 0.0026340 | 18.54538 | 0.0034278 | 1.6111786 |
683.35 | 18.80207 | 656.0678 | 27.2821484 | 0.0028496 | 18.55506 | 0.0030893 | 1.4703811 |
683.40 | 18.77230 | 656.1357 | 27.2643275 | 0.0028835 | 18.55512 | 0.0031221 | 1.4694456 |
684.30 | 20.40521 | 652.4130 | 31.8870645 | 0.0027710 | 18.53740 | 0.0041031 | 1.7184969 |
684.35 | 18.65079 | 656.4127 | 27.9372559 | 0.0030340 | 18.55271 | 0.0034503 | 1.5058276 |
684.80 | 20.70707 | 651.7248 | 33.0752493 | 0.0031397 | 18.53237 | 0.0050056 | 1.7828616 |
684.95 | 22.00000 | 648.7772 | 36.1728422 | 0.0060937 | 18.51819 | 0.0116893 | 1.9527273 |
686.05 | 17.69978 | 658.5809 | 27.4691918 | 0.0048924 | 18.55430 | 0.0053989 | 1.4819807 |
686.70 | 21.48329 | 649.9552 | 36.7447808 | 0.0046457 | 18.51560 | 0.0091689 | 1.9821590 |
687.55 | 16.70103 | 660.8578 | 26.6921837 | 0.0081426 | 18.55688 | 0.0085402 | 1.4424181 |
689.10 | 19.57567 | 654.3042 | 34.7958028 | 0.0023837 | 18.52485 | 0.0041997 | 1.8748943 |
691.05 | 17.25806 | 659.5879 | 31.4621134 | 0.0061658 | 18.53893 | 0.0089489 | 1.6984884 |
691.35 | 17.37526 | 659.3207 | 32.0292749 | 0.0058026 | 18.53661 | 0.0087217 | 1.7287909 |
691.90 | 17.34931 | 659.3798 | 32.5201770 | 0.0058814 | 18.53454 | 0.0091147 | 1.7553571 |
693.95 | 16.26229 | 661.8581 | 32.0919525 | 0.0099910 | 18.53606 | 0.0152039 | 1.7358342 |
694.25 | 17.70045 | 658.5793 | 35.6706910 | 0.0048906 | 18.52064 | 0.0091008 | 1.9244552 |
694.80 | 20.12881 | 653.0431 | 41.7569351 | 0.0025400 | 18.49022 | 0.0064467 | 2.2501556 |
695.20 | 18.26539 | 657.2914 | 37.9085959 | 0.0036418 | 18.51004 | 0.0076347 | 2.0439093 |
695.30 | 14.54214 | 665.7797 | 29.5203181 | 0.0197142 | 18.54585 | 0.0258910 | 1.6046353 |
696.55 | 19.15261 | 655.2687 | 41.2813773 | 0.0025396 | 18.49279 | 0.0062997 | 2.2245288 |
698.20 | 17.36574 | 659.3424 | 38.8575607 | 0.0058314 | 18.50509 | 0.0129014 | 2.0973803 |
698.25 | 15.13898 | 664.4190 | 33.8310304 | 0.0158934 | 18.52812 | 0.0272017 | 1.8353793 |
698.45 | 17.84266 | 658.2551 | 40.1948450 | 0.0045362 | 18.49833 | 0.0107106 | 2.1681499 |
699.10 | 15.40704 | 663.8079 | 35.2921243 | 0.0143320 | 18.52161 | 0.0266093 | 1.9131285 |
700.30 | 18.86534 | 655.9236 | 44.3764533 | 0.0027816 | 18.47552 | 0.0079772 | 2.3916032 |
704.30 | 16.47413 | 661.3751 | 42.9249647 | 0.0090664 | 18.48300 | 0.0246377 | 2.3207019 |
706.75 | 17.86263 | 658.2096 | 48.5404085 | 0.0044886 | 18.45005 | 0.0154546 | 2.6182552 |
645.00 | 21.88586 | 649.0374 | -4.0373950 | 0.0057432 | 18.60218 | 0.0001371 | -0.2179132 |
672.20 | 20.20000 | 652.8808 | 19.3191890 | 0.0025898 | 18.57910 | 0.0014071 | 1.0410789 |
655.75 | 19.03640 | 655.5336 | 0.2163941 | 0.0026242 | 18.60323 | 0.0000002 | 0.0116613 |
R
IIR
as the ratio of variances in model vs. actual# as ratio of variances
school_reg %>%
augment() %>%
summarize(r_sq = var(.fitted)/var(testscr)) # var. of *predicted* testscr over var. of *actual* testscr
r_sq |
---|
0.0512401 |
\[R^2 = \frac{var(\hat{Y})}{var(Y)} = \frac{\color{red}{\frac{1}{n-1}}\sum^n_{i=1}(\hat{Y_i}-\bar{Y})^2}{\color{red}{\frac{1}{n-1}}\sum^n_{i=1}(Y_i-\bar{Y})^2} \rightarrow \frac{SSM}{SST}\]
\[\hat{\sigma_u}=\sqrt{\frac{SSR}{n-2}}=\sqrt{\frac{\sum \hat{u}_i^2}{n-2}}\]
R
SSR | df | SER |
---|---|---|
144315.5 | 418 | 18.58097 |
Call:
lm(formula = testscr ~ str, data = ca_school)
Residuals:
Min 1Q Median 3Q Max
-47.727 -14.251 0.483 12.822 48.540
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 698.9330 9.4675 73.825 < 2e-16 ***
str -2.2798 0.4798 -4.751 2.78e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 18.58 on 418 degrees of freedom
Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
F-statistic: 22.58 on 1 and 418 DF, p-value: 2.783e-06
summary()
command in Base R
gives:
Multiple R-squared
Residual standard error
(SER)
r.squared | adj.r.squared | sigma | statistic | p.value | df | logLik | AIC | BIC | deviance | df.residual | nobs |
---|---|---|---|---|---|---|---|---|---|---|---|
0.0512401 | 0.0489703 | 18.58097 | 22.57511 | 2.8e-06 | 1 | -1822.25 | 3650.499 | 3662.62 | 144315.5 | 418 | 420 |
r.squared
is 0.05
\(\implies\) about 5% of variation in testscr
is explained by our modelsigma
(SER) is 18.6
\(\implies\) average test score is about 18.6 points above/below our model’s prediction\[\color{orange}{Y}=\color{teal}{\beta}(\color{purple}{X})\]
where \(\color{orange}{Y}\) is numeric:
Example
Supplemental Nutrition Assistance Program (SNAP aka “Food Stamps”) is a federal welfare program designed to assist those in poverty by supplementing their budget for nutritious food.
Example
Netflix uses your past viewing history, the day of the week, and the time of the day to guess which show you want to watch next
\[Y_i = \beta_0+\beta_1 X_i+u_i\]
OLS estimators \((\hat{\beta_0}\) and \(\hat{\beta_1})\) are computed from a finite (specific) sample of data
Our OLS model contains 2 sources of randomness:
Inferential statistics analyzes a sample to make inferences about a much larger (unobservable) population
Population: all possible individuals that match some well-defined criterion of interest
Sample: some portion of the population of interest to represent the whole
Example
Suppose you randomly select 100 people and ask how many hours they spend on the internet each day. You take the mean of your sample, and it comes out to 5.4 hours.
Roughly, but probably not exactly
Sampling variability describes the effect of a statistic varying somewhat from sample to sample
If we collect many samples, and each sample is randomly drawn from the population (and then replaced), then the distribution of samples is said to be independently and identically distributed (i.i.d.)
Each sample is independent of each other sample (due to replacement)
Each sample comes from the identical underlying population distribution
Calculating OLS estimators for a sample makes the OLS estimators themselves random variables:
Draw of \(i\) is random \(\implies\) value of each \((X_i,Y_i)\) is random \(\implies\) \(\hat{\beta_0},\hat{\beta_1}\) are random
Taking different samples will create different values of \(\hat{\beta_0},\hat{\beta_1}\)
Therefore, \(\hat{\beta_0},\hat{\beta_1}\) each have a sampling distribution across different samples
The Central Limit Theorem
If we collect samples of size \(n\) from the same population and generate a sample statistic (e.g. OLS estimator), then with large enough \(n\), the distribution of the sample statistic is approximately normal if:
If neither of these are true, we have other methods (coming shortly!)
One of the most fundamental principles in all of statistics
Allows for virtually all testing of statistical hypotheses \(\rightarrow\) estimating probabilities of values on a normal distribution
The CLT allows us to approximate the sampling distributions of \(\hat{\beta_0}\) and \(\hat{\beta_1}\) as normal
We care about \(\hat{\beta_1}\) (slope) since it has economic meaning, rarely about \(\hat{\beta_0}\) (intercept)
\[\hat{\beta_1} \sim N(\mathbb{E}[\hat{\beta_1}], \sigma_{\hat{\beta_1}})\]
\[\hat{\beta_1} \sim N(\mathbb{E}[\hat{\beta_1}], \sigma_{\hat{\beta_1}})\]
\(\mathbb{E}[\hat{\beta_1}]\); what is the center of the distribution? (today)
\(\sigma_{\hat{\beta_1}}\); how precise is our estimate? (next class)
In order to talk about \(\mathbb{E}[\hat{\beta_1}]\), we need to talk about population \(u\)
Recall: \(u\) is a random variable, and we can never measure the error term
\[\mathbb{E}[u]=0\]
\[\mathbb{E}[u]=0\]
\[var(u|X)=\sigma^2_{u}\]
\[\mathbb{E}[u]=0\]
\[var(u|X)=\sigma^2_{u}\]
\[cor(u_i,u_j)=0 \quad \forall i \neq j\]
\[\mathbb{E}[u]=0\]
\[var(u|X)=\sigma^2_{u}\]
\[cor(u_i,u_j)=0 \quad \forall i \neq j\]
\[cor(X, u)=0 \text{ or } E[u|X]=0\]
\[\mathbb{E}[u]=0\]
\[var(u|X)=\sigma^2_{u}\]
\[var(u|X)=\sigma^2_{u}\]
Assumption 2 implies that errors are “homoskedastic”: they have the same variance across \(X\)
Often this assumption is violated: errors may be “heteroskedastic”: they do not have the same variance across \(X\)
This is a problem for inference, but we have a simple fix for this (next class)
\[cor(u_i,u_j)=0 \quad \forall i \neq j\]
For simple cross-sectional data, this is rarely an issue
Time-series & panel data nearly always contain serial correlation or autocorrelation between errors
e.g. “this week’s sales look a lot like last week’s sales, which look like…etc”
There are fixes to deal with autocorrelation (coming much later)
\[cor(X, u)=0\]
This is the absolute killer assumption, because it assumes exogeneity
Often called the Zero Conditional Mean assumption:
\[E[u|X]=0\]
“Does knowing \(X_i\) give any useful information about \(u_i\)?”
\[E[\hat{\beta_1}]=\beta_1\]
Does not mean any sample gives us \(\hat{\beta_1}=\beta_1\), only the estimation procedure will, on average, yield the correct value
Random errors above and below the true value cancel out (so that on average, \(E[\hat{u}|X]=0)\)
Example
We want to estimate the average height (H) of U.S. adults (population) and have a random sample of 100 adults.
Calculate the mean height of our sample \((\bar{H})\) to estimate the true mean height of the population \((\mu_H)\)
\(\bar{H}\) is an estimator of \(\mu_H\)
Unbiasedness: does the estimator give us the true parameter on average?
Efficiency: an estimator with a smaller variance is better
\(\mathbf{\hat{\beta_1}}\) is the Best Linear Unbiased Estimator (BLUE) estimator of \(\mathbf{\beta_1}\) when \(X\) is exogenous1
No systematic difference, on average, between sample values of \(\hat{\beta_1}\) and the true population \(\beta_1\):
\[E[\hat{\beta_1}]=\beta_1\]
\[cor(X,u)=0\]
\[E(u|X)=0\]
For any known value of \(X\), the expected value of \(u\) is 0
Knowing the value of \(X\) must tell us nothing about the value of \(u\) (anything else relevant to \(Y\) other than \(X\))
We can then confidently assert causation: \(X \rightarrow Y\)
\[cor(X,u)\neq 0\]
Example
Suppose we estimate the following relationship:
\[\text{Violent crimes}_t=\beta_0+\beta_1\text{Ice cream sales}_t+u_t\]
We find \(\hat{\beta_1}>0\)
Does this mean Ice cream sales \(\rightarrow\) Violent crimes?
\[E[\hat{\beta_1}]=\beta_1+cor(X,u)\frac{\sigma_u}{\sigma_X}\]
Example
\[wages_i=\beta_0+\beta_1 education_i+u\]
Is this an accurate reflection of \(education \rightarrow wages\)?
Does \(E[u|education]=0\)?
What would \(E[u|education]>0\) mean?
Example
\[\text{per capita cigarette consumption}=\beta_0+\beta_1 \text{State cig tax rate}+u\]
Is this an accurate reflection of \(taxes \rightarrow consumption\)?
Does \(E[u|tax]=0\)?
What would \(E[u|tax]>0\) mean?