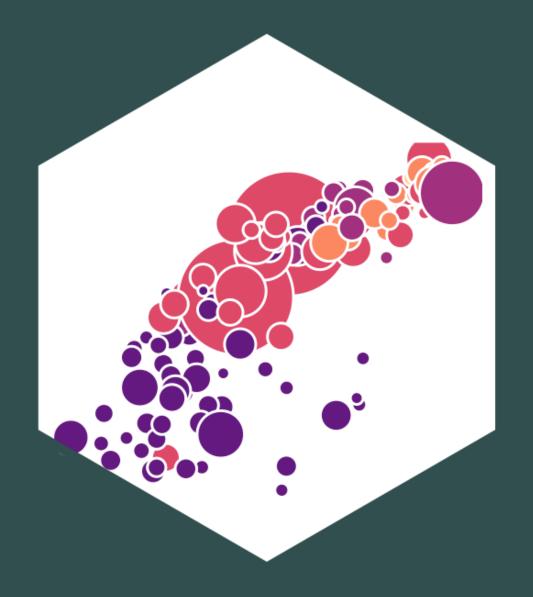
3.3 — Omitted Variable Bias ECON 480 • Econometrics • Fall 2022

Dr. Ryan Safner Associate Professor of Economics

safner@hood.edu
ryansafner/metricsF22
metricsF22.classes.ryansafner.com



Contents

Omitted Variables and Bias
The Multivariate Regression Model
Multivariate Regression in R

Omitted Variables and Bias

The Error Term

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- u_i includes all other variables that affect Y
- Every regression model always has omitted variables assumed in the error
 - Most are unobservable (hence "u")
 - **Examples**: innate ability, weather at the time, etc
- Again, we assume u is random, with E[u|X]=0 and $var(u)=\sigma_u^2$
- Sometimes, omission of variables can **bias** OLS estimators $(\hat{eta_0}$ and $\hat{eta_1})$

Omitted Variable Bias I

• Omitted variable bias (OVB) for some omitted variable **Z** exists if two conditions are met:

Omitted Variable Bias I

• Omitted variable bias (OVB) for some omitted variable **Z** exists if two conditions are met:

1. \mathbb{Z} is a determinant of Y

• i.e. Z is in the error term, u_i



Omitted Variable Bias I

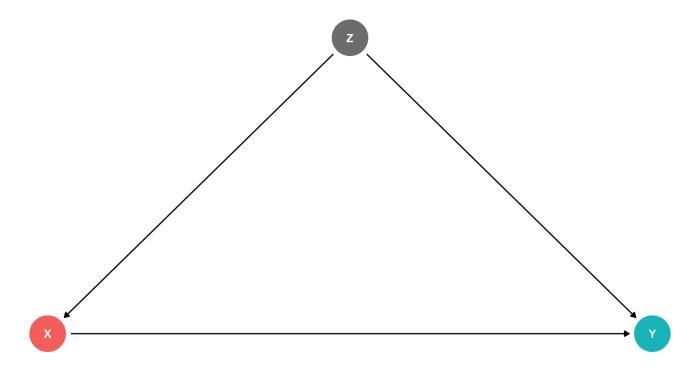
• Omitted variable bias (OVB) for some omitted variable **Z** exists if two conditions are met:

1. \mathbb{Z} is a determinant of Y

• i.e. Z is in the error term, u_i

2. ${\bf Z}$ is correlated with the regressor X

- i.e. $cor(X, Z) \neq 0$
- implies $cor(X, u) \neq 0$
- implies X is endogenous

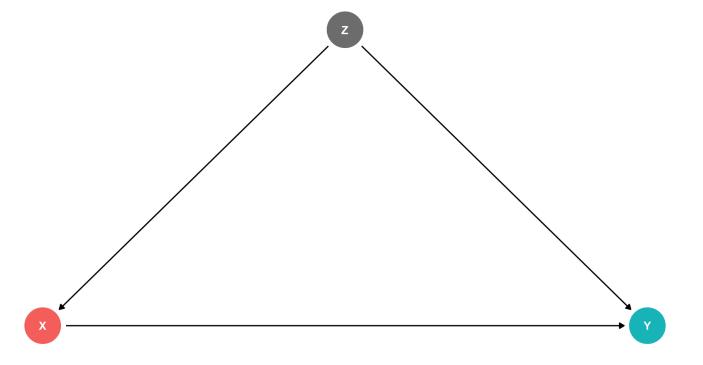


Omitted Variable Bias II

- ullet Omitted variable bias makes X endogenous
- Violates zero conditional mean assumption

$$\mathbb{E}(u_i|X_i) \neq 0 \implies$$

• knowing X_i tells you something about u_i (i.e. something about Y not by way of X)!

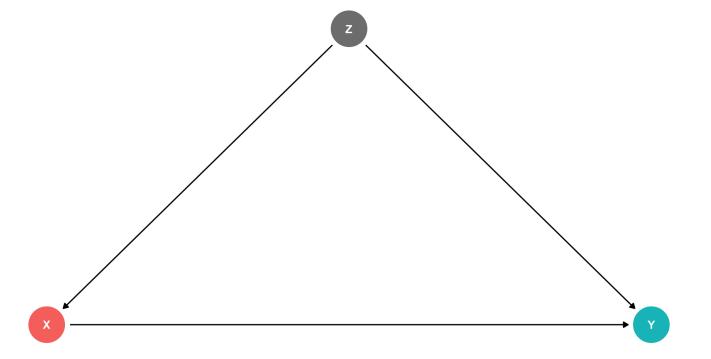


Omitted Variable Bias III

- $\hat{\beta}_1$ is biased: $\mathbb{E}[\hat{\beta}_1] \neq \beta_1$
- $\hat{\beta_1}$ systematically over- or under-estimates the true relationship (β_1)
- $\hat{\beta}_1$ "picks up" both pathways:

$$1.X \rightarrow Y$$

$$2.X \leftarrow Z \rightarrow Y$$



Omited Variable Bias: Class Size Example

Example

Consider our recurring class size and test score example:

Test score_i =
$$\beta_0 + \beta_1 STR_i + u_i$$

- Which of the following possible variables would cause a bias if omitted?
- 1. Z_i : time of day of the test
- 2. Z_i : parking space per student
- 3. Z_i : percent of ESL students

Recall: Endogeneity and Bias

• The true expected value of $\hat{\beta}_1$ is actually: [See class 2.4 for proof.]

$$E[\hat{\beta}_1] = \beta_1 + cor(X, u) \frac{\sigma_u}{\sigma_X}$$

- 1. If X is exogenous: cor(X, u) = 0, we're just left with β_1
- 2. The larger cor(X,u) is, larger bias: $\left(E[\hat{\beta}_1]-\beta_1\right)$
- 3. We can "sign" the direction of the bias based on cor(X, u)
- Positive cor(X, u) overestimates the true β_1 ($\hat{\beta}_1$ is too high)
- Negative cor(X, u) underestimates the true β_1 ($\hat{\beta}_1$ is too low)

Endogeneity and Bias: Correlations I

• Here is where checking correlations between variables can help us:

- el_pct is strongly (negatively) correlated with testscr (Condition 1)
- el_pct is reasonably (positively) correlated with str (Condition 2)

Look at Conditional Distributions I

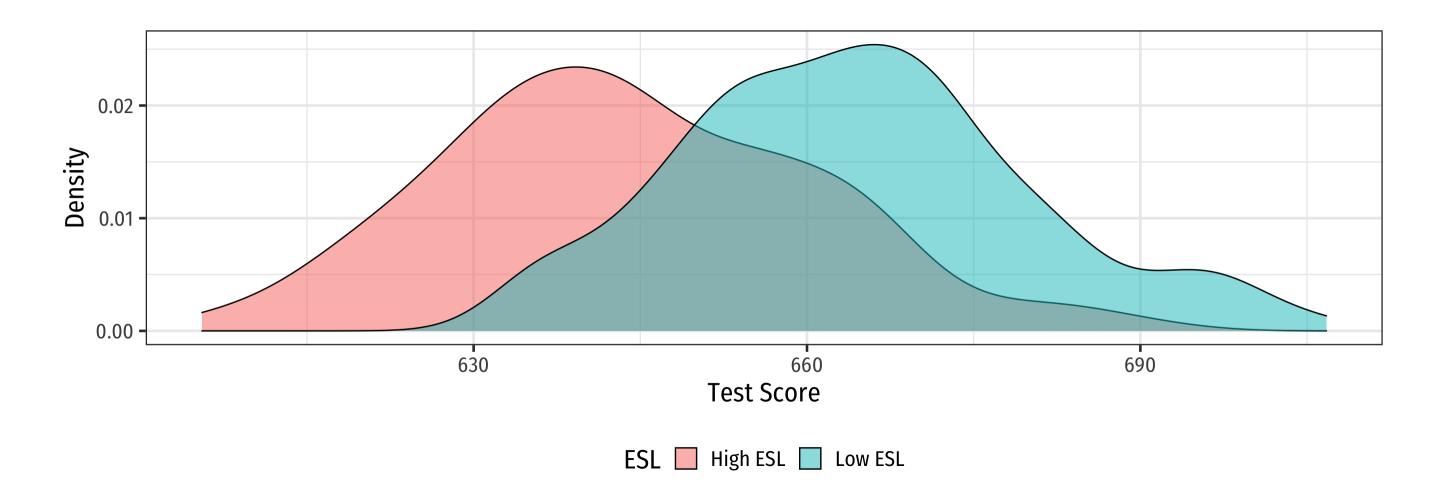
ESL Average_test_score <chr> High ESL 643.9591 Low ESL 664.3540 2 rows 664.3540

ECON 480 — Econometrics

Look at Conditional Distributions II

Plot

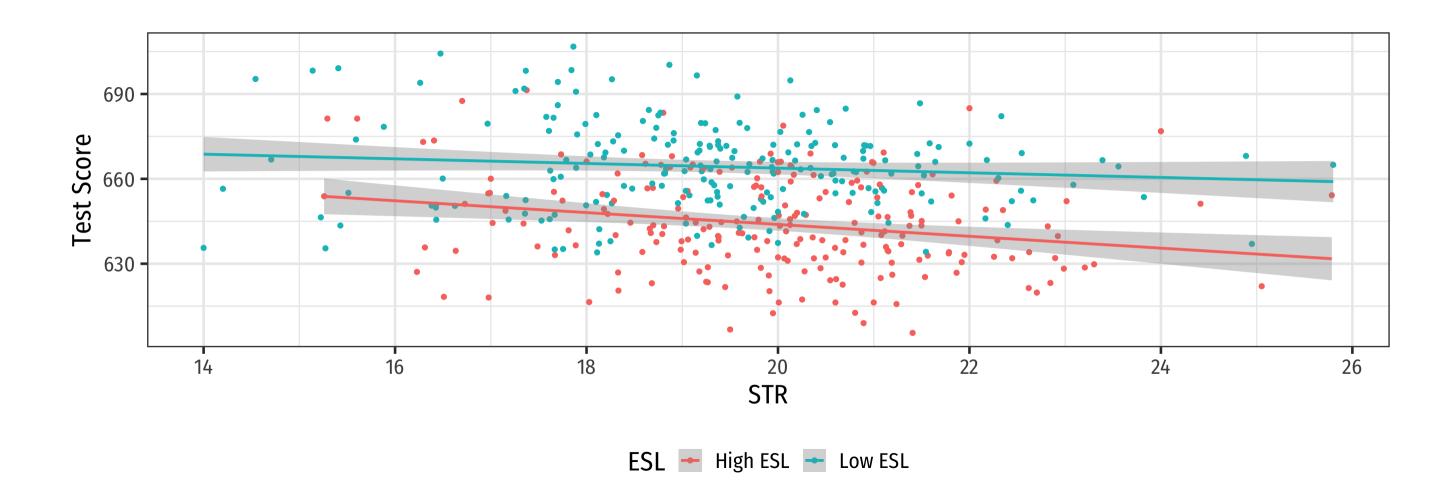
Code



Look at Conditional Distributions III

Plot

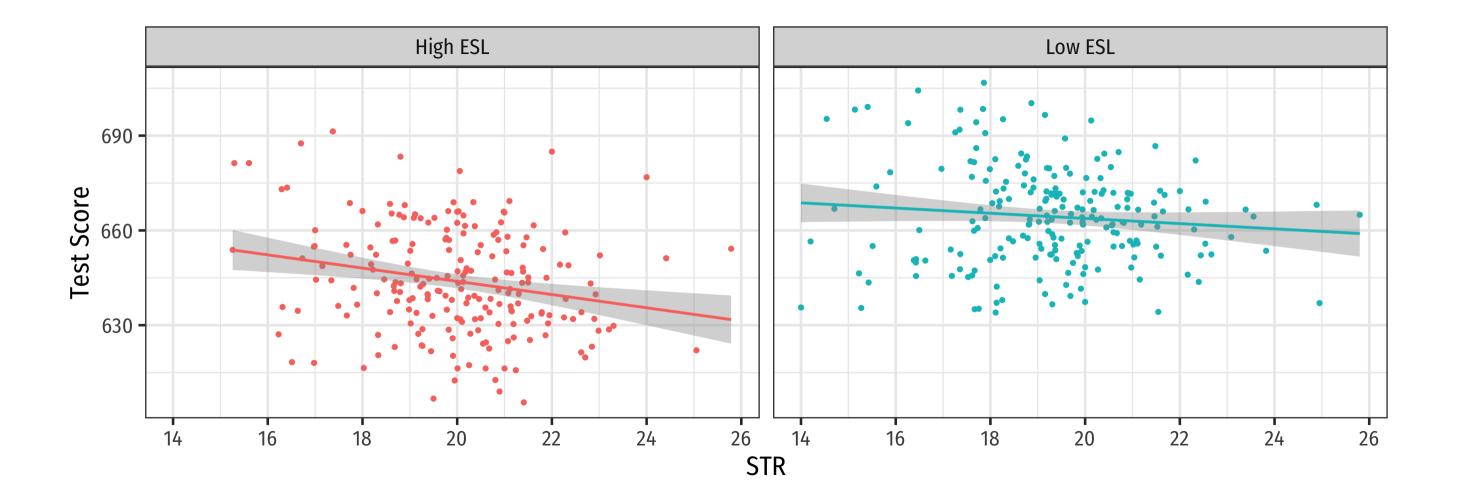
Code



Look at Conditional Distributions IV

Plot

Code



Omitted Variable Bias in the Class Size Example

$$\mathbb{E}[\hat{\beta}_1] = \beta_1 + bias$$

$$\mathbb{E}[\hat{\beta}_1] = \beta_1 + cor(X, u) \frac{\sigma_u}{\sigma_X}$$

- cor(STR, u) is positive (via %EL)
- cor(u, Test score) is negative (via %EL)
- β_1 is negative (between test score and str)
- Bias from %EL is positive
 - Since β_1 is negative, it's made to be a *larger* negative number than it truly is
 - Implies that our $\hat{\beta}_1$ overstates the effect of reducing STR on improving Test Scores

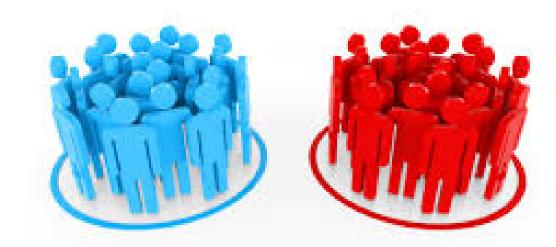
Omitted Variable Bias: Messing with Causality I

- If school districts with higher Test Scores happen to have both lower STR **AND** districts with smaller STR sizes tend to have less %EL ...
- How can we say $\hat{\beta}_1$ estimates the marginal effect of $\Delta STR \to \Delta Test$ Score?
- (We can't.)

Omitted Variable Bias: Messing with Causality II

- Consider an ideal random controlled trial (RCT)
- Randomly assign experimental units

 (e.g. people, cities, etc) into two (or more)
 groups:
 - Treatment group(s): gets a (certain type or level of) treatment
 - Control group(s): gets no treatment(s)
- Compare results of two groups to get average treatment effect



RCTs Neutralize Omitted Variable Bias I

Example

Imagine an ideal RCT for measuring the effect of STR on Test Score

- School districts would be randomly assigned a student-teacher ratio
- With random assignment, all factors in *u* (%ESL students, family size, parental income, years in the district, day of the week of the test, climate, etc) are distributed independently of class size

RCTs Neutralize Omitted Variable Bias II

Example

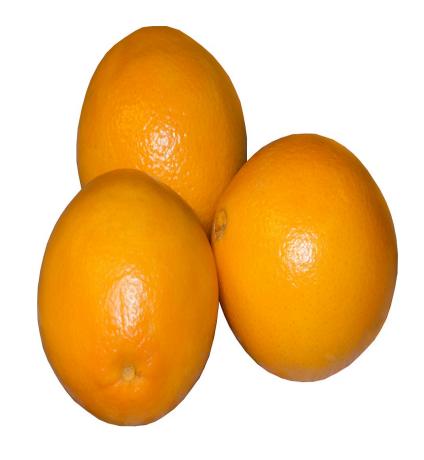
Imagine an ideal RCT for measuring the effect of STR on Test Score

- Thus, cor(STR, u) = 0 and E[u|STR] = 0, i.e. **exogeneity**
- Our $\hat{\beta_1}$ would be an **unbiased estimate** of β_1 , measuring the **true causal effect** of STR \rightarrow Test Score

But We Rarely, if Ever, Can Do RCTs

- But we **didn't** run an RCT, we have observational data!
- "Treatment" of having a large or small class size is **NOT** randomly assigned!
- %EL: plausibly fits criteria of O.V. bias!
 - 1. %EL is a determinant of Test Score
 - 2. %EL is correlated with STR
- Thus, "control" group and "treatment" group differ systematically!
 - Small STR also tend to have lower %*EL*; large STR also tend to have higher %*EL*
 - Selection bias: $cor(STR, \%EL) \neq 0$, $E[u_i|STR_i] \neq 0$

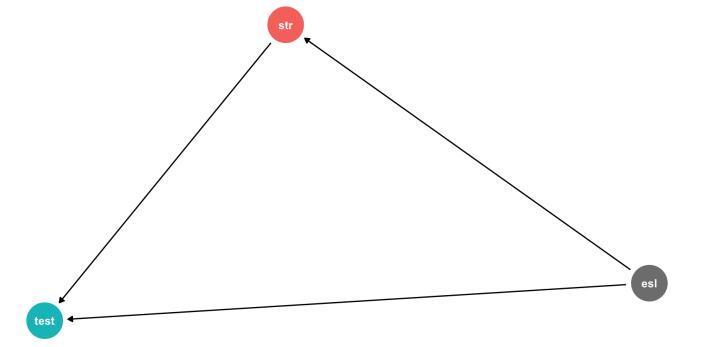
Treatment Group



Control Group

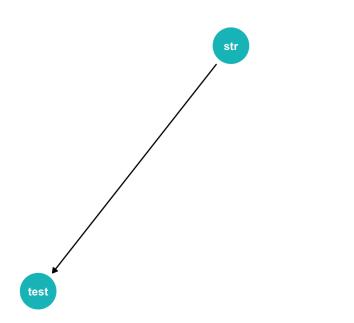
Another Way to Control for Variables I

- Pathways connecting str and test score:
 - 1. str \rightarrow test score
 - 2. str \leftarrow ESL \rightarrow testscore



Another Way to Control for Variables II

- Pathways connecting str and test score:
 - 1. str \rightarrow test score
 - 2. str \leftarrow ESL \rightarrow testscore
- DAG rules tell us we need to control for ESL in order to identify the causal effect of str → test score
- So now, how do we control for a variable?



{esl}

Controlling for Variables

- Look at effect of STR on Test Score by comparing districts with the same %EL
 - Eliminates differences in %EL between high and low STR classes
 - "As if" we had a control group! Hold %EL constant
- The simple fix is just to **not omit %EL!**
 - Make it another independent variable on the righthand side of the regression

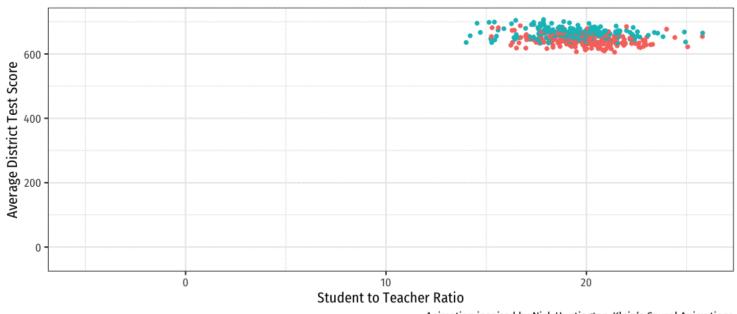
Treatment Group

Control Group

Controlling for Variables

- Look at effect of STR on Test Score by comparing districts with the same %EL
 - Eliminates differences in %EL between high and low STR classes
 - "As if" we had a control group! Hold %EL constant
- The simple fix is just to **not omit %EL!**
 - Make it another independent variable on the righthand side of the regression

Relationship between STR and Test Scores, Controlling for ESL 1. Raw data: cor(str. testscr) = -0.226



Animation inspired by Nick Huntington-Klein's Causal Animations

The Multivariate Regression Model

Multivariate Econometric Models Overview

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + u$$

- Y is the **dependent variable** of interest
 - AKA "response variable," "regressand," "Left-hand side (LHS) variable"
- X_1, X_2, \cdots, X_k are independent variables
 - AKA "explanatory variables", "regressors," "Right-hand side (RHS) variables", "covariates"
- Our data consists of a spreadsheet of observed values of $(Y_i, X_{1i}, X_{2i}, \cdots, X_{ki})$

Multivariate Econometric Models: Overview II

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + u$$

- To model, we "regress Y on X_1, X_2, \cdots, X_k "
- $\beta_0, \beta_1, \beta_2, \cdots, \beta_k$ are parameters that describe the population relationships between the variables
 - unknown! to be estimated
 - we estimate k+1 parameters ("betas") on k variables¹
- *u* is a random error term
 - 'U'nobservable, we can't measure it, and must model with assumptions about it

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

• Consider changing X_1 by ΔX_1 while holding X_2 constant:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$
 Before the change

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

• Consider changing X_1 by ΔX_1 while holding X_2 constant:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$
 Before the change $Y + \Delta Y = \beta_0 + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2$ After the change

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

• Consider changing X_1 by ΔX_1 while holding X_2 constant:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

$$Y + \Delta Y = \beta_0 + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2$$

$$\Delta Y = \beta_1 \Delta X_1$$

Before the change
After the change
The difference

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

• Consider changing X_1 by ΔX_1 while holding X_2 constant:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$
 Before the change $Y + \Delta Y = \beta_0 + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2$ After the change $\Delta Y = \beta_1 \Delta X_1$ The difference $\frac{\Delta Y}{\Delta X_1} = \beta_1$ Solving for β_1

$$\beta_1 = \frac{\Delta Y}{\Delta X_1}$$
 holding X_2 constant

Similarly, for β_2 :

$$\beta_2 = \frac{\Delta Y}{\Delta X_2}$$
 holding X_1 constant

And for the constant, β_0 :

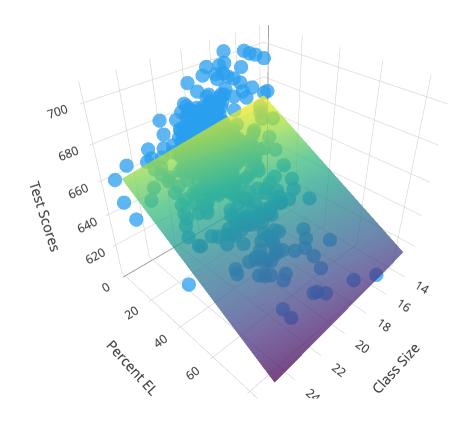
$$\beta_0$$
 = predicted value of Y when $X_1 = 0$, $X_2 = 0$

You Can Keep Your Intuitions...But They're Wrong Now

- We have been envisioning OLS regressions as the equation of a line through a scatterplot of data on two variables, X and Y
 - β_0 : "intercept"
 - β_1 : "slope"
- With 3+ variables, OLS regression is no longer a "line" for us to estimate...

You Can Keep Your Intuitions...But They're Wrong Now

- We have been envisioning OLS regressions as the equation of a line through a scatterplot of data on two variables, X and Y
 - β_0 : "intercept"
 - β_1 : "slope"
- With 3+ variables, OLS regression is no longer a "line" for us to estimate...



The "Constant"

• Alternatively, we can write the population regression equation as:

$$Y_i = \beta_0 X_{0i} + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

- Here, we added X_{0i} to β_0
- X_{0i} is a **constant regressor**, as we define $X_{0i}=1$ for all i observations
- Likewise, β_0 is more generally called the "constant" term in the regression (instead of the "intercept")
- This may seem silly and trivial, but this will be useful next class!

The Population Regression Model: Example I

Example

Beer Consumption_i = $\beta_0 + \beta_1$ Price_i + β_2 Income_i + β_3 Nachos Price_i + β_4 Wine Price + u_i

- Let's see what you remember from micro(econ)!
- What measures the price effect? What sign should it have?
- What measures the **income effect**? What sign should it have? What should inferior or normal (necessities & luxury) goods look like?
- What measures the **cross-price effect(s)**? What sign should substitutes and complements have?

The Population Regression Model: Example II

Example

Beer $\widehat{\text{Consumption}}_i = 20 - 1.5 \, \text{Price}_i + 1.25 \, \text{Income}_i - 0.75 \, \text{Nachos Price}_i + 1.3 \, \text{Wine Price}_i$

• Interpret each \hat{eta}

The Multivariate Regression Model

Multivariate Regression in R

Format for regression is

```
1 \quad lm(y \sim x1 + x2, \quad data = df)
```

- y is dependent variable (listed first!)
- ~ means "is modeled by" or "is explained by"
- x1 and x2 are the independent variables
- df is the dataframe where the data is stored

Multivariate Regression in R

• Stored as an lm object called school_reg_2, a list object

Multivariate Regression in R

```
1 # get full summary
 2 summary(school reg 2)
Call:
lm(formula = testscr ~ str + el pct, data = ca school)
Residuals:
   Min
            10 Median
                          3Q
                                 Max
-48.845 - 10.240 - 0.308 9.815 43.461
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
    -1.10130 0.38028 -2.896 0.00398 **
str
el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
```

• Stored as an lm object called school_reg_2, a list object

Multivariate Regression with Broom

• The tidy() function creates a tidy tibble of regression output

```
# load packages
 2 library(broom)
   # tidy regression output
   school reg 2 %>%
     tidy()
                                                                                          estimate
 term
                                                                                             <dbl>
 <chr>
 (Intercept)
                                                                                      686.0322487
 str
                                                                                         -1.1012959
 el_pct
                                                                                        -0.6497768
3 rows | 1-2 of 5 columns
```


Multivariate Regression Output Table

```
1 # load package
  library(modelsummary)
   modelsummary(models = list("Test Score" = school_r
                               "Test Score" = school r
                fmt = 2, # round to 2 decimals
                output = "html",
                coef rename = c("(Intercept)" = "Cons
                                 "str" = "STR"),
9
10
                gof map = list(
                  list("raw" = "nobs", "clean" = "n",
11
                  list("raw" = "r.squared", "clean" =
12
                  list("raw" = "rmse", "clean" = "SER
13
14
15
                escape = FALSE,
                stars = c('*' = .1, '**' = .05, '***
16
```

	Test Score	Test Score
Constant	698.93***	686.03***
	(9.47)	(7.41)
STR	-2.28***	-1.10***
	(0.48)	(0.38)
el_pct		-0.65***
		(0.04)
n	420	420
R^2	0.05	0.43
SER	18.54	14.41
* p < 0.1, **	p < 0.05, *** p	o < 0.01

