4.3 — Categorical Data ECON 480 • Econometrics • Fall 2022 Dr. Ryan Safner Associate Professor of Economics

safner@hood.edu
 ryansafner/metricsF22
 metricsF22.classes.ryansafner.com

Contents

Working with factor Variables in R **Regression with Dummy Variables Recoding Dummy Variables Categorical Variables (More than 2 Categories) Interaction Effects** Interactions Between a Dummy and Continuous Variable **Interactions Two Dummy Variables Interactions Between Two Continuous Variables**

Categorical Variables

- **Categorical variables** place an individual into one of several possible *categories*
 - e.g. sex, season, political party
 - may be responses to survey questions
 - can be quantitative (e.g. age, zip code)
- In R: character or factor type data
 - factor ⇒ specific possible categories

Question

Do you invest in the stock market? What kind of advertising do you use? What is your class at school? I would recommend this course to another student.

How satisfied are you with this product?

Categories or Responses
Yes No Newspapers Internet Direct mailings Freshman Sophomore Junior Senior Strongly Disagree Slightly Disagree
Slightly Agree Strongly Agree Very Unsatisfied Unsatisfied Satisfied Very Satisfied

Working with factor Variables in R

ECON 480 — Econometrics

Factors in **R** I

- factor is a special type of character object class that indicates membership in a category (called a level)
- Suppose I have data on students:

id <dbl></dbl>	rank <chr></chr>
1	Freshman
2	Junior
3	Sophomore
4	Sophomore
5	Senior
5 rows	

• See that Rank is a character (<chr>) variable, just a string of text

Factors in R II

• We can make rank a factor variable, to indicate a student is a member of one of the possible categories: (freshman, sophomore, junior, senior)

<pre>1 students <- students 2 mutate(rank = as.f 3</pre>	<pre>s %>% actor(rank)) # overwrite and change class of Rank to</pre>
4 students %>% head(n	= 5)
id	rank
<dbl></dbl>	<fct></fct>
1	Freshman
2	Junior
3	Sophomore
4	Sophomore
5	Senior
5 rows	

See now it's a factor (<fct>)

Factors in R III

- 1 # what are the categories?
- 2 students %>%
- 3 group_by(rank) %>%
- 4 count()

rank

<fct>

Freshman

Junior

Senior

Sophomore

4 rows

1 # note the order is arbitrary! This is an "unordered" factor

n
<int></int>
4
1
3
2

Ordered Factors in R I

- If there is a rank order you wish to preserve, you can make an ordered (factor) variable
 - list the levels from 1st to last

1 st	udents <- students %>%	
2	<pre>mutate(rank = ordered(</pre>	<pre>rank, # overwrite and change class of Rank to orde</pre>
3		<pre># next, specify the levels, in order</pre>
4		<pre>levels = c("Freshman", "Sophomore", "Junior", "Ser</pre>
5)
6)	
7		
8 st	udents %>% head(n = 5)	
	id	rank
	<dh ></dh >	< ord>
	-UDI-	VIUr
	1	Freshman
	· · · · · · · · · · · · · · · · · · ·	
	2	Junior
	3	Sophomore
	-	
	4	Sophomore
	•	ECON / 80 - Economotrics

id	rank
<dbl></dbl>	<ord></ord>
5	Senior
5 rows	

grade <dbl>

74

Ordered Factors in R II

- 1 students %>%
- 2 group_by(rank) %>%
- 3 count()

	rank <ord></ord>
F	reshman
So	phomore
	Junior
	Senior
4 rows	

Example Research Question with Categorical Data

Example

How much higher wages, on average, do men earn compared to women?

ECON 480 — Econometrics

A Difference in Group Means

 Basic statistics: can test for statistically significant difference in group means with a ttest¹, let:

- Y_M : average earnings of a sample of n_M men
- $[Y_W]$ {.pink: average earnings of a sample of n_M women
- **Difference** in group averages: $d = \overline{Y}_M \overline{Y}_W$
- The hypothesis test is:
 - $H_0: d = 0$
 - H_1 : $d \neq 0$

Plotting factors in R

• Plotting wage vs. a factor variable, e.g. gender (which is either Male or Female) looks like this

- Effectively R treats values of a factor variable as integers (e.g. "Female" = 0, "Male" = 1)
- Let's make this more explicit by making a **dummy variable** to stand in for gender

ECON 480 — Econometrics

Regression with Dummy Variables

ECON 480 — Econometrics

Comparing Groups with Regression

- In a regression, we can easily compare across groups via a **dummy variable**¹
- Dummy variable only = 0 or = 1, if a condition is TRUE vs. FALSE
- Signifies whether an observation belongs to a category or not

Example

$$\widehat{Wage}_{i} = \widehat{\beta}_{0} + \widehat{\beta}_{1} Female_{i} \quad \text{where } Female_{i} = \begin{cases} 1 & \text{if indiv} \\ 0 & \text{if indiv} \end{cases}$$

- Again, $\hat{\beta_1}$ makes less sense as the "slope" of a line in this context

1 Also called a **hinany wariable** or **dichotomous wariable** since it only takes on 2 values

variable¹ SE

vidual *i* is *Female* vidual *i* is *Male*

Comparing Groups in Regression: Scatterplot

• Hard to see relationships because of **overplotting** . . .

Comparing Groups in Regression: Scatterplot

- Tip: use geom_jitter() instead of geom_point() to randomly nudge points!
 - Only used for *plotting*, does not affect actual data, regression, etc.

ECON 480 — Econometrics

Dummy Variables as Group Means

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 D_i \quad \text{where } D_i = \{0, 1\}$$

- When $D_i = 0$ ("Control group"):
 - $\hat{Y}_i = \hat{\beta}_0$
 - $E[Y_i | D_i = 0] = \hat{\beta}_0 \iff$ the mean of *Y* when $D_i = 0$
- When $D_i = 1$ ("Treatment group"):
 - $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 D_i$
 - $E[Y_i | D_i = 1] = \hat{\beta}_0 + \hat{\beta}_1 \iff$ the mean of *Y* when $D_i = 1$
- So the **difference** in group means:

$$= E[Y_i | D_i = 1] - E[Y_i | D_i = 0]$$

$$= (\hat{\beta}_0 + \hat{\beta}_1) - (\hat{\beta}_0)$$

$$= \hat{\beta}_1$$

Dummy Variables as Group Means: Our Example

C Example	
	$\widehat{Wage}_i = \hat{\beta}_0 + \hat{\beta}_1 Female_i$

• Mean wage for men:

$$E[Wage|Female = 0] = \hat{\beta_0}$$

• Mean wage for women:

$$E[Wage|Female = 1] = \hat{\beta_0} + \hat{\beta_1}$$

• Difference in wage between men & women:

$\hat{\beta}_1$

21

Comparing Groups in Regression: Scatterplot

Female

 $\widehat{Wage}_i = \hat{\beta}_0 + \hat{\beta}_1 Female_i$

The Data

wage	gender	educ	exper	tenure
<dbl></dbl>	<fct></fct>	<int></int>	<int></int>	<int></int>
1 3.10	Female	11	2	0
2 3.24	Female	12	22	2
3 3.00	Male	11	2	0
4 6.00	Male	8	44	28
5 5.30	Male	12	7	2
6 8.75	Male	16	9	8
7 11.25	Male	18	15	7
8 5.00	Female	12	5	3
9 3.60	Female	12	26	4
10 18.18	Male	17	22	21
1-10 of 526 rows 1-6 of 25 columns Previous 1 2 3 4 5			rious 1 2 3 4 5 6 53 Next	

Conditional Group Means

sd = sd(wage))

mean <dbl>

4.587659

Visualize Differences

Conditional Wage Distribution by Gender 0.3 Density 0.2 0.1 0.0 + \$0 \$5 \$10 \$15 Hourly Wage Gender 📕 Women Men

The Regression (factor variables)

1 reg <- lm(wage ~ gender, data = wages)</pre> 2 summary(reg)

```
term
Call:
lm(formula = wage ~ gender, data = wages)
                                                                               <chr>
Residuals:
                                                                               (Intercept)
   Min
            10 Median
                            30
                                  Max
-5.5995 -1.8495 -0.9877 1.4260 17.8805
                                                                               genderMale
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                                                                              2 rows | 1-1 of 5 columns
(Intercept) 4.5877
                        0.2190 20.950 < 2e-16 ***
             2.5118
                        0.3034 8.279 1.04e-15 ***
genderMale
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.476 on 524 degrees of freedom
Multiple R-squared: 0.1157, Adjusted R-squared: 0.114
F-statistic: 68.54 on 1 and 524 DF, p-value: 1.042e-15
```

- Putting the factor variable gender in, R automatically chooses a value to set as TRUE, in this case Male = TRUE
 - genderMALE = 1 for Male, = 0 for Female
- According to the data, men earn, on average, \$2.51 more than women

1 library(broom)

2 tidy(reg)

The Regression: Dummy Variables

• Let's explicitly make gender into a dummy variable for female:

```
1 # add a female dummy variable
2 wages <- wages %>%
    mutate(female = ifelse(test = gender == "Female",
3
                           yes = 1,
4
```

5	no = 0))				
1 wages					
	wage	female	educ	exper	tenure
	<qpf><</qpf>	<dpl></dpl>	<int></int>	<int></int>	<int></int>
1	3.10	1	11	2	0
2	3.24	1	12	22	2
3	3.00	0	11	2	0
4	6.00	0	8	44	28
5	5.30	0	12	7	2
6	8.75	0	16	9	8
7	11.25	0	18	15	7
8	5.00	1	12	5	3
9	3.60	1	12	26	4
10	18.18	0	17	22	21
1-10 of 526 rows 1-6 of 26 columns Previous 1 2 3 4 5 6 53 Next				3 4 5 6 53 Next	

The Regression (Dummy variables)

1 female_reg <- lm(wage ~ female, data = wages)
2 summary(female reg)</pre>

Call:

lm(formula = wage ~ female, data = wages)

Residuals:

Min 1Q Median 3Q Max -5.5995 -1.8495 -0.9877 1.4260 17.8805

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 7.0995 0.2100 33.806 < 2e-16 *** female -2.5118 0.3034 -8.279 1.04e-15 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.476 on 524 degrees of freedom Multiple R-squared: 0.1157, Adjusted R-squared: 0.114 F-statistic: 68.54 on 1 and 524 DF, p-value: 1.042e-15 1 library(broom)

2 tidy(female_reg)

term

<chr>

(Intercept)

female

2 rows | 1-1 of 5 columns

Dummy Regression vs. Group Means

From tabulation of group means

Gender	Avg. Wage	Std. Dev.	п
Female	4.59	2.33	252
Male	7.10	4.16	274
Difference	2.51	0.30	_

term	
<chr></chr>	
(Interc	ept)
female	
2 rows	1-1 of 5 columns

From *t*-test of difference in group means

ECON 480 — Econometrics

lumns

$\widehat{\text{Wages}}_i = 7.10 - 2.51 \text{ Female}_i$

Recoding Dummy Variables

ECON 480 — Econometrics

Recoding Dummy Variables

Example

Suppose instead of female we had used:

$$\widehat{Wage}_i = \hat{\beta}_0 + \hat{\beta}_1 Male_i \qquad \text{where } Male_i = \begin{cases} 1 & \text{if person} \\ 0 & \text{if person} \end{cases}$$

on *i* is *Male* on *i* is *Female*

Recoding Dummies in the Data

```
1 wages <- wages %>%
   mutate(male = ifelse(female == 0, # condition: is female equal to 0?
2
```

yes = 1, # if true: code as "1"			
4 no = 0) # if false: code as "0"			
5			
6 # verify it worke	ed		
7 wages %>%			
<pre>8 select(wage, fe</pre>	emale, male) %>%		
9 head($n = 5$)			
	wage	female	male
	<dpl></dpl>	<dpl></dpl>	<dp[></dp[>
1	3.10	1	0
2	3.24	1	0
3	3.00	0	1
4	6.00	0	1
5	5.30	0	1
5 rows			

Scatterplot with Male

Dummy Variables as Group Means: With Male

C Example	
	$\widehat{Wage}_i = \hat{\beta}_0 + \hat{\beta}_1 Male_i$

• Mean wage for men:

$$E[Wage|Male = 1] = \hat{\beta_0} + \hat{\beta_1}$$

• Mean wage for women:

$$E[Wage|Male = 0] = \hat{\beta_0}$$

• Difference in wage between men & women:

 $\hat{\beta}_1$

Scatterplot & Regression Line with Male

The Regression with Male

1 male_reg <- lm(wage ~ male, data = wages)
2 summary(male reg)</pre>

Call: lm(formula = wage ~ male, data = wages)

Residuals:

Min 1Q Median 3Q Max -5.5995 -1.8495 -0.9877 1.4260 17.8805

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 4.5877 0.2190 20.950 < 2e-16 *** male 2.5118 0.3034 8.279 1.04e-15 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

1 library(broom) 2 tidy(male_reg) term <chr> (Intercept) male 2 rows | 1-1 of 5 columns

The Dummy Regression: Male or Female

	Wage	Wage
Constant	7.10***	4.59***
	(0.21)	(0.22)
female	-2.51***	
	(0.30)	
male		2.51***
		(0.30)
n	526	526
Adj. R ²	0.11	0.11
SER	3.47	3.47
* p < 0.1, **	p < 0.05, *;	** p < 0.01

- D = 0 group)
- regression? We'll come to that...

• Note it doesn't matter if we use male or female, difference is always \$2.51 • Compare the constant (average for the

• Should you use male AND female in a

Categorical Variables (More than 2 Categories)

ECON 480 — Econometrics

Categorical Variables with More than 2 Categories

- A categorical variable expresses membership in a category, where there is no ranking or hierarchy of the categories
 - We've looked at categorical variables with 2 categories only
 - e.g. Male/Female, Spring/Summer/Fall/Winter, Democratic/Republican/Independent
- Might be an ordinal variable expresses rank or an ordering of data, but not necessarily their relative magnitude
 - e.g. Order of finalists in a competition (1st, 2nd, 3rd)
 - e.g. Highest education attained (1=elementary school, 2=high school, 3=bachelor's degree, 4=graduate degree)
 - in R, an ordered factor

Using Categorical Variables in Regression I

Example

How do wages vary by region of the country? Let $Region_i = \{Northeast, Midwest, South, West\}$

• Can we run the following regression?

$$\widehat{Wages}_i = \hat{\beta}_0 + \hat{\beta}_1 \operatorname{Region}_i$$

Using Categorical Variables in Regression II

Example

How do wages vary by region of the country? Let $Region_i = \{Northeast, Midwest, South, West\}$

• Code region numerically:

$$Region_{i} = \begin{cases} 1 & \text{if } i \text{ is in } Northeas \\ 2 & \text{if } i \text{ is in } Midwest \\ 3 & \text{if } i \text{ is in } South \\ 4 & \text{if } i \text{ is in } West \end{cases}$$

• Can we run the following regression?

$$\widehat{Wages_i} = \hat{\beta_0} + \hat{\beta_1} Region_i$$

ECON 480 — Econometrics

st

Using Categorical Variables in Regression III

Example

How do wages vary by region of the country? Let $Region_i = \{Northeast, Midwest, South, West\}$

- Create a dummy variable for *each* region:
 - Northeast_i = 1 if i is in Northeast, otherwise = 0
 - $Midwest_i = 1$ if *i* is in Midwest, otherwise = 0
 - $South_i = 1$ if *i* is in South, otherwise = 0
 - $West_i = 1$ if *i* is in West, otherwise = 0
- Can we run the following regression?

$$\widehat{Wages}_i = \hat{\beta}_0 + \hat{\beta}_1 Northeast_i + \hat{\beta}_2 Midwest_i + \hat{\beta}_3$$

 $South_i + \hat{\beta}_4 West_i$

The Dummy Variable Trap

• If we include *all* possible categories, they are **perfectly multicollinear**, an exact linear function of one another:

 $Northeast_i + Midwest_i + South_i + West_i = 1$

• This is known as the **dummy variable trap**, a common source of perfect multicollinearity

$\forall i$

The Reference Category

- To avoid the dummy variable trap, always omit one category from the regression, known as the "reference category"
- It does not matter which category we omit!
- Coefficients on each dummy variable measure the *difference* between the *reference* category and each category dummy

The Reference Category: Example

Example

 $\widehat{Wages_i} = \hat{\beta_0} + \hat{\beta_1} Northeast_i + \hat{\beta_2} Midwest_i + \hat{\beta_3} South_i :::$

- *West_i* is omitted (arbitrarily chosen)
- $\hat{\beta}_0$: average wage for *i* in the West
- $\hat{\beta}_1$: difference between West and Northeast
- $\hat{\beta}_2$: difference between West and Midwest
- $\hat{\beta}_3$: difference between West and South

Regression in R with Categorical Variable

1 lm(wage ~ region, data = wages) %>% summary()

Call: lm(formula = wage ~ region, data = wages)

Residuals:

Min 1Q Median 3Q Max -6.083 -2.387 -1.097 1.157 18.610

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	5.7105	0.3195	17.871	<2e-16	***
regionNortheast	0.6593	0.4651	1.418	0.1569	
regionSouth	-0.3236	0.4173	-0.775	0.4385	
regionWest	0.9029	0.5035	1.793	0.0735	•

48

Regression in R with Dummies (& Dummy Variable Trap)

lm(wage ~ northeast + midwest + south + west, data = wages) %>% summary()

```
Call:
lm(formula = wage ~ northeast + midwest + south + west, data = wages)
Residuals:
  Min
         10 Median
                      30
                            Max
-6.083 -2.387 -1.097 1.157 18.610
Coefficients: (1 not defined because of singularities)
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.6134 0.3891 16.995 < 2e-16 ***
northeast -0.2436 0.5154 -0.473 0.63664
midwest -0.9029 0.5035 -1.793 0.07352.
south -1.2265 0.4728 -2.594 0.00974 **
```

• R automatically drops one category to avoid perfect multicollinearity

Using Different Reference Categories in R

	Wage	Wage	Wage	Wage
Constant	6.37***	5.71***	5.39***	6.61***
	(0.34)	(0.32)	(0.27)	(0.39)
northcen	-0.66		0.32	-0.90*
	(0.47)		(0.42)	(0.50)
south	-0.98**	-0.32		-1.23***
	(0.43)	(0.42)		(0.47)
west	0.24	0.90*	1.23***	
	(0.52)	(0.50)	(0.47)	
northeast		0.66	0.98**	-0.24
		(0.47)	(0.43)	(0.52)
n	526	526	526	526
R ²	0.02	0.02	0.02	0.02
Adj. R ²	0.01	0.01	0.01	0.01
SER	3.66	3.66	3.66	3.66
* p < 0.1, ** p < 0.05, *** p < 0.01				

- Constant is alsways average wage for reference (omitted) region
- Compare coefficients between Midwest in (1) and Northeast in (2)...
- Compare coefficients between West in (3) and South in (4)...
- Does not matter which region we omit!
 - Same R^2 , SER, coefficients give same results

Dummy Dependent (Y) Variables

• In many contexts, we will want to have our *dependent* (Y) variable be a dummy variable

- A model where Y is a dummy is called a **linear probability model**, as it measures the probability of *Y* occurring given the *X*'s, i.e. $P(Y_i = 1 | X_1, \dots, X_k)$
 - e.g. the probability person *i* is Admitted to a program with a given GPA
- Special models to properly interpret and extend this (logistic "logit", probit, etc)
- Feel free to write papers with dummy Y variables!

51

Interaction Effects

ECON 480 — Econometrics

Sliders and Switches

- Marginal effect of dummy variable: effect on Y of going from 0 to 1
- Marginal effect of continuous variable: effect on Y of a 1 unit change in X

Interaction Effects

• Sometimes one X variable might *interact* with another in determining Y

Example

Consider the gender pay gap again.

- Gender affects wages
- *Experience* affects wages
- Does experience affect wages differently by gender?
 - i.e. is there an interaction effect between gender and experience?
- Note this is NOT the same as just asking: "do men earn more than women with the same amount of experience?"

Three Types of Interactions

- Depending on the types of variables, there are 3 possible types of interaction effects
- We will look at each in turn
- 1. Interaction between a **dummy** and a **continuous** variable:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times I)$$

2. Interaction between a **two dummy** variables:

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times \beta_2 D_{2i}) + \beta_3 (D_{1i} \times \beta_2$$

3. Interaction between a **two continuous** variables:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times$$

ECON 480 — Econometrics

Interactions Between a Dummy and Continuous Variable

ECON 480 — Econometrics

Interactions: A Dummy & Continuous Variable

Dummy Continuous Variable Variable

• Does the marginal effect of the continuous variable on Y change depending on whether the dummy is "on" or "off"?

Interactions: A Dummy & Continuous Variable I

• We can model an interaction by introducing a variable that is an .hi[interaction term] capturing the interaction between two variables:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i) \quad \text{where}$$

- β_3 estimates the **interaction effect** between X_i and D_i on Y_i
- What do the different coefficients (β) 's tell us?
 - Again, think logically by examining each group $(D_i = 0 \text{ or } D_i = 1)$

re $D_i = \{0, 1\}$

Dummy-Continuous Interaction Effects as Two Regressions I

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i \times D_i$$

• When $D_i = 0$ ("Control group"):

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2(\mathbf{0}) + \hat{\beta}_3 X_i \times (\mathbf{0})$$
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

• When $D_i = 1$ ("Treatment group"):

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + \hat{\beta}_{2}(1) + \hat{\beta}_{3}X_{i} \times (1)$$
$$\hat{Y}_{i} = (\hat{\beta}_{0} + \hat{\beta}_{2}) + (\hat{\beta}_{1} + \hat{\beta}_{3})X_{i}$$

• So what we really have is *two* regression lines!

Dummy-Continuous Interaction Effects as Two Regressions

 $Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

$Y_{i} = (\hat{\beta_{0}} + \hat{\beta_{2}}) + (\hat{\beta_{1}} + \hat{\beta_{3}})X_{i}$

Interpretting Coefficients I

 $Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$

• To interpret the coefficients, compare cases after changing X by ΔX :

$$Y_i + \Delta Y_i = \beta_0 + \beta_1 (X_i + \Delta X_i) \beta_2 D_i + \beta_3 \left((X_i + \Delta X_i) \beta_2 D_i + \beta_3 \right)$$

• Subtracting these two equations, the difference is:

$$\Delta Y_i = \beta_1 \Delta X_i + \beta_3 D_i \Delta X_i$$
$$\frac{\Delta Y_i}{\Delta X_i} = \beta_1 + \beta_3 D_i$$

- The effect of $X \to Y$ depends on the value of D_i !
- β_3 : increment to the effect of $X \to Y$ when $D_i = 1$ (vs. $D_i = 0$)

$(i)D_i$

Interpretting Coefficients II

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times I)$$

- $\hat{\beta}_0: E[Y_i]$ for $X_i = 0$ and $D_i = 0$
- β_1 : Marginal effect of $X_i \to Y_i$ for $D_i = 0$
- β_2 : Marginal effect on Y_i of difference between $D_i = 0$ and $D_i = 1$
- β_3 : The **difference** of the marginal effect of $X_i \to Y_i$ between $D_i = 0$ and $D_i = 1$
- This is a bit awkward, easier to think about the two regression lines:

D_i)

Interpretting Coefficients III

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$$

- For $D_i = 0$ Group: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
 - Intercept: $\hat{\beta}_0$
 - Slope: $\hat{\beta}_1$
- $\hat{\beta}_2$: difference in intercept between groups
- $\hat{\beta}_3$: difference in slope between groups
- How can we determine if the two lines have the same slope and/or intercept?
 - Same intercept? *t*-test $H_0: \beta_2 = 0$
 - Same slope? *t*-test $H_0: \beta_3 = 0$

• Intercept:
$$\hat{\beta}_0 + \hat{\beta}_2$$

• Slope: $\hat{\beta}_1 + \hat{\beta}_3$

• For $D_i = 1$ Group: $\hat{Y}_i = (\hat{\beta}_0 + \hat{\beta}_2) + (\hat{\beta}_1 + \hat{\beta}_3)X_i$

Interactions in Our Example

Example

$$\widehat{wage}_i = \hat{\beta}_0 + \hat{\beta}_1 \text{ experience}_i + \hat{\beta}_2 \text{ female}_i + \hat{\beta}_3 \text{ (experience}_i)$$

• For men female = 0:

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1} \text{ experience}_i$$

• For women female = 1:

$$\widehat{wage}_{i} = (\widehat{\beta_{0}} + \widehat{\beta_{2}}) + (\widehat{\beta_{1}} + \widehat{\beta_{3}}) \text{ experimentary experim$$

$ce_i \times female_i$)

rience_i

Interactions in Our Example: Scatterplot

► Code

Gender • Female • Male

Interactions in Our Example: Scatterplot

► Code

Interactions in Our Example: Scatterplot

► Code

Interactions in Our Example: Regression in R

- Syntax for adding an interaction term is easy¹ in $R: \times 1 \times 2$
 - Or could just do x1 * x2 (multiply)

<pre>1 # both are identical in R 2 interaction_reg <- lm(wage ~ exper * female, 3 interaction_reg <- lm(wage ~ exper + female +</pre>	data = wages) exper * female, data = wages)		
term	estimate	std.error	statistic
<chr></chr>	<dp>></dp>	<dpl></dpl>	<dpl></dpl>
(Intercept)	6.15827549	0.34167408	18.023830
exper	0.05360476	0.01543716	3.472450
female	-1.54654677	0.48186030	-3.209534
exper:female	-0.05506989	0.02217496	-2.483427
4 rows 1-4 of 5 columns			

1. There are several options here. (1) Using :, running y ~ x1:x2 will run $Y = \beta_0 + \beta_3 (X_1 \times X_2)$ only (i.e. not including x1 and x2 terms). You of course can add them in yourself by running y ~

Interactions in Our Example: Regression

► Code

	Wage
Constant	6.16***
	(0.34)
exper	0.05***
	(0.02)
female	-1.55***
	(0.48)
exper:female	-0.06**
	(0.02)
n	526
Adj. R ²	0.13
SER	3.43
* p < 0.1, ** p < 0.0	95, *** p < 0.01

71

Interactions in Our Example: Interpretting Coefficients

 $\widehat{\text{wage}}_i = 6.16 + 0.05 \text{ experience}_i - 1.55 \text{ female}_i - 0.06 (\text{experience}_i \times \text{female}_i)$

- $\hat{\beta}_0$: **Men** with 0 years of experience earn 6.16
- $\hat{\beta}_1$: For every additional year of experience, **men** earn \$0.05
- $\hat{\beta}_2$: Women with 0 years of experience earn \$1.55 less than men
- $\hat{\beta}_3$: Women earn \$0.06 less than men for every additional year of experience

Interactions in Our Example: As Two Regressions I

 $\widehat{\text{wage}}_i = 6.16 + 0.05 \text{ experience}_i - 1.55 \text{ female}_i - 0.06 (\text{experience}_i \times \text{female}_i)$

Regression for men female = 0

 $\widehat{\text{wage}}_i = 6.16 + 0.05 \text{ experience}_i$

- Men with 0 years of experience earn \$6.16 on average
- For every additional year of experience, men earn \$0.05 more on average

73

Interactions in Our Example: As Two Regressions I

 $\widehat{\text{wage}}_i = 6.16 + 0.05 \text{ experience}_i - 1.55 \text{ female}_i - 0.06 (\text{experience}_i \times \text{female}_i)$

Regression for women female = 1

$$\widehat{\text{wage}}_i = 6.16 + 0.05 \text{ experience}_i - 1.55(1) - 0.06$$

= (6.16 - 1.55) + (0.05 - 0.06) experience
= 4.61 - 0.01 experience_i

- Women with 0 years of experience earn \$4.61 on average
- For every additional year of experience, women earn \$0.01 less on average

$5 \text{ experience}_i \times (1)$

i'i

74

Interactions in Our Example: Hypothesis Testing

 $\widehat{\text{wage}}_i = 6.16 + 0.05 \text{ experience}_i - 1.55 \text{ female}_i - 0.06 \text{ (experience}_i \times \text{female}_i)$

term	estimate	std.error	statistic
<chr></chr>	<qp[></qp[>	<dpl></dpl>	<qpf></qpf>
(Intercept)	6.15827549	0.34167408	18.023830
exper	0.05360476	0.01543716	3.472450
female	-1.54654677	0.48186030	-3.209534
exper:female	-0.05506989	0.02217496	-2.483427
4 rows 1-4 of 5 columns			

- Are intercepts of the 2 regressions different? H_0 : $\beta_2 = 0$
 - Difference between men vs. women for no experience?
 - Is $\hat{\beta}_2$ significant?
 - Yes (reject) H₀: p-value = 0.00
- Are slopes of the 2 regressions different? H_0 : $\beta_3 = 0$
 - Difference between men vs. women for marginal effect of experience?
 - Is $\hat{\beta}_3$ significant?
 - Yes (reject) *H*₀: *p*-value = 0.01

Interactions Between Two Dummy Variables

ECON 480 — Econometrics

Interactions Between Two Dummy Variables

Dummy Dummy Variable Variable

• Does the marginal effect on Y of one dummy going from "off" to "on" change depending on whether the *other* dummy is "off" or "on"?

Interactions Between Two Dummy Variables

 $Y_{i} = \beta_{0} + \beta_{1}D_{1i} + \beta_{2}D_{2i} + \beta_{3}(D_{1i} \times D_{2i})$

- D_{1i} and D_{2i} are dummy variables
- $\hat{\beta}_1$: effect on *Y* of going from $D_{1i} = 0$ to $D_{1i} = 1$ when $D_{2i} = 0$
- $\hat{\beta}_2$: effect on Y of going from $D_{2i} = 0$ to $D_{2i} = 1$ when $D_{1i} = 0$
- $\hat{\beta}_3$: effect on Y of going from $D_{1i} = 0$ to $D_{1i} = 1$ when $D_{2i} = 1$
 - *increment* to the effect of D_{1i} going from 0 to 1 when $D_{2i} = 1$ (vs. 0)
- As always, best to think logically about possibilities (when each dummy = 0 or = 1)

2 Dummy Interaction: Interpretting Coefficients

 $Y_{i} = \beta_{0} + \beta_{1}D_{1i} + \beta_{2}D_{2i} + \beta_{3}(D_{1i} \times D_{2i})$

- To interpret coefficients, compare cases:
 - Hold D_2 constant (set to some value $D_2 = \mathbf{d_2}$)
 - Plug in 0s or 1s for D_1

$$E(Y|D_1 = 0, D_2 = \mathbf{d_2}) = \beta_0 + \beta_2 \mathbf{d_2}$$

$$E(Y|D_1 = 1, D_2 = \mathbf{d_2}) = \beta_0 + \beta_1(1) + \beta_2 \mathbf{d_2} + \beta_3(1)$$

• Subtracting the two, the difference is:

 $\beta_1 + \beta_3 \mathbf{d_2}$

- The marginal effect of $D_1 \rightarrow Y$ depends on the value of D_2
 - $\hat{\beta}_3$ is the *increment* to the effect of D_1 on Y when D_2 goes from 0 to 1

$(1)d_2$

Interactions Between 2 Dummy Variables: Example

Example

Does the gender pay gap change if a person is married vs. single?

$$\widehat{\text{wage}}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} \text{ female}_{i} + \hat{\beta}_{2} \text{ married}_{i} + \hat{\beta}_{3} \text{ (female}_{i} \times \text{married}_{i})$$

- Logically, there are 4 possible combinations of $female_i = \{0, 1\}$ and $married_i = \{0, 1\}$
- 1. Unmarried men ($female_i = 0$, $married_i = 0$) 3. Unmarried women ($female_i = 0$)

$$\widehat{wage_i} = \widehat{\beta_0}$$

$$\widehat{wage_i} = \widehat{\beta_0} + \widehat{\beta_1}$$

2. Married men ($female_i = 0$, $married_i = 1$)

4. Married women (female)

$$ale_i = 1, married_i = 0$$

$$e_i = 1, married_i = 1$$

Conditional Group Means in the Data

<pre>1 # get average wage for unmarried men 2 wages %>% 3 filter(female == 0, 4 married == 0) %>% 5 summarize(mean = mean(wage))</pre>		<pre>1 # get average wag 2 wages %>% 3 filter(female = 4 married 5 summarize(mean</pre>
	mean <dbl></dbl>	
	5.168023	
1 row		1 row
<pre>1 # get average wage for married men 2 wages %>% 3 filter(female == 0, 4 married == 1) %>% 5 summarize(mean = mean(wage))</pre>		<pre>1 # get average wag 2 wages %>% 3 filter(female = 4 married 5 summarize(mean</pre>
	mean <dbl></dbl>	
	7.983032	
1 row	ECON 480 -	- Econometrics

Two Dummies Interaction: Group Means

$$\widehat{\text{wage}}_i = \hat{\beta}_0 + \hat{\beta}_1 \text{ female}_i + \hat{\beta}_2 \text{ married}_i + \hat{\beta}_3 \text{ (female}_i)$$

	Men	Women
Unmarried	\$5.17	\$4.61
Married	\$7.98	\$4.57

$\operatorname{male}_i \times \operatorname{married}_i$)

Two Dummies Interaction: Regression in R I

1 reg_dummies <- lm(wage ~ female + married + female:married, data = wages)</pre>

2 reg_dummies %>% tidy()			
term	estimate	std.error	statistic
<chr></chr>	<dpl></dpl>	<dbl></dbl>	<dbl></dbl>
(Intercept)	5.1680233	0.3614348	14.298631
female	-0.5564399	0.4735578	-1.175020
married	2.8150086	0.4363413	6.451391
female:married	-2.8606829	0.6075577	-4.708496
4 rows 1-4 of 5 columns			

Two Dummies Interaction: Regression in R II

► Code

	Wage
Constant	5.17***
	(0.36)
female	-0.56
	(0.47)
married	2.82***
	(0.44)
female:married	-2.86***
	(0.61)
n	526
Adj. R ²	0.18
SER	3.34
* p < 0.1, ** p < 0.05	, *** p < 0.01

Two Dummies Interaction: Interpretting Coefficients I

 $\widehat{\text{wage}}_i = 5.17 - 0.56 \text{ female}_i + 2.82 \text{ married}_i - 2.86 (\text{female}_i \times \text{married}_i)$

	Men	Women
Unmarried	\$5.17	\$4.61
Married	\$7.98	\$4.57

- Wage for unmarried men: $\hat{\beta}_0 = 5.17$
- Wage for married men: $\hat{\beta}_0 + \hat{\beta}_2 = 5.17 + 2.82 = 7.98$
- Wage for unmarried women: $\hat{\beta}_0 + \hat{\beta}_1 = 5.17 0.56 = 4.61$
- Wage for married women: $\hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3 = 5.17 0.56 + 2.82 2.86 = 4.57$

86

Two Dummies Interaction: Interpretting Coefficients II

 $\widehat{\text{wage}}_i = 5.17 - 0.56 \text{ female}_i + 2.82 \text{ married}_i - 2.86 (\text{female}_i \times \text{married}_i)$

	Men	Women	Diff
Unmarried	\$5.17	\$4.61	\$0.56
Married	\$7.98	\$4.57	\$3.41
Diff	\$2.81	\$0.04	\$2.85

• $\hat{\beta}_0$: Wage for **unmarried men**

- $\hat{\beta}_1$: **Difference** in wages between **men** and **women** who are **unmarried**
- $\hat{\beta}_2$: **Difference** in wages between **married** and **unmarried men**
- $\hat{\beta}_3$: **Difference** in:
 - effect of Marriage on wages between men and women
 - effect of **Gender** on wages between **unmarried** and **married** individuals
 - "difference in differences"

Interactions Between Two Continuous Variables

ECON 480 — Econometrics

Interactions Between Two Continuous Variables

Continuous Variable

Continuous Variable

• Does the marginal effect of X_1 on Y depend on what X_2 is set to?

ECON 480 — Econometrics

Interactions Between Two Continuous Variables

 $Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}(X_{1i} \times X_{2i})$

• To interpret coefficients, compare changes after changing ΔX_{1i} (holding X_2 constant):

 $Y_{i} + \Delta Y_{i} = \beta_{0} + \beta_{1}(X_{1} + \Delta X_{1i})\beta_{2}X_{2i} + \beta_{3}((X_{1i} + \Delta X_{1i}) \times X_{2i})$

• Take the difference to get:

$$\Delta Y_i = \beta_1 \Delta X_{1i} + \beta_3 X_{2i} \Delta X_{1i}$$
$$\frac{\Delta Y_i}{\Delta X_{1i}} = \beta_1 + \beta_3 X_{2i}$$

- The effect of $X_1 \rightarrow Y$ depends on the value of X_2
 - β_3 : increment to the effect of $X_1 \rightarrow Y$ for every 1 unit change in X_2

Continuous Variables Interaction: Example

Example

Do education and experience interact in their determination of wages?

$$\widehat{\text{wage}}_i = \hat{\beta}_0 + \hat{\beta}_1 \text{ education}_i + \hat{\beta}_2 \text{ experience}_i + \hat{\beta}_3 \text{ (education}_i)$$

• Estimated effect of education on wages depends on the amount of experience (and vice versa)!

$$\frac{\Delta \text{wage}}{\Delta \text{education}} = \hat{\beta}_1 + \beta_3 \text{ experience}$$

$$\frac{\Delta \text{wage}}{\Delta \text{experience}} = \hat{\beta}_2 + \beta_3 \text{ education}$$

• This is a type of nonlinearity (we will examine nonlinearities next lesson)

 \times experience_{*i*})

- \mathbf{e}_i
- \mathbf{n}_i

Continuous Variables Interaction: In R I

1 reg_cont <- lm(wage ~ educ + exper + educ:exper, data = wages)</pre>

2 reg_cont %>% tidy()

term	estimate
<chr></chr>	<dpl></dpl>
(Intercept)	-2.859915627
educ	0.601735470
exper	0.045768911
educ:exper	0.002062345
4 rows 1-3 of 5 columns	

Continuous Variables Interaction: In R II

► Code

	Wage
Constant	-2.86**
	(1.18)
educ	0.60***
	(0.09)
exper	0.05
	(0.04)
educ:exper	0.00
	(0.00)
n	526
Adj. R ²	0.22
SER	3.25
* p < 0.1, ** p < 0.	05, *** p < 0.01

Continuous Variables Interaction: Marginal Effects

 $\widehat{\text{wage}}_i = -2.860 + 0.602 \text{ education}_i + 0.047 \text{ experience}_i + 0.002 (education}_i \times \text{experience}_i)$

Marginal Effect of *Education* on Wages by Years of *Experience*:

Experience	$\frac{\Delta \text{wage}}{\Delta \text{education}} = \hat{\beta}_1 + \hat{\beta}_3 \text{ experien}$
5 years	0.602 + 0.002(5) = 0.612
10 years	0.602 + 0.002(10) = 0.622
15 years	0.602 + 0.002(15) = 0.632

• Marginal effect of education \rightarrow wages **increases** with more experience

ICe

Continuous Variables Interaction: Marginal Effects

 $\widehat{\text{wage}}_i = -2.860 + 0.602 \text{ education}_i + 0.047 \text{ experience}_i + 0.002 (education}_i \times \text{experience}_i)$

Marginal Effect of *Experience* on Wages by Years of *Education*:

Education	$\Delta wage = \hat{\beta}_2 \perp \hat{\beta}_2$ education
	Δ experience $-p_2 + p_3$ cuuca
5 years	0.047 + 0.002(5) = 0.057
10 years	0.047 + 0.002(10) = 0.067
15 years	0.047 + 0.002(15) = 0.077

- Marginal effect of experience \rightarrow wages **increases** with more education
- If you want to estimate the marginal effects more precisely, and graph them, see the appendix in today's appendix

tion

