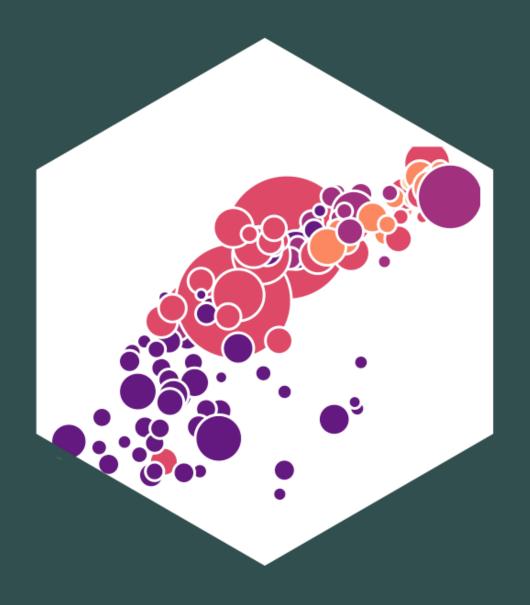
5.2 — Difference-in-Differences ECON 480 • Econometrics • Fall 2022

Dr. Ryan Safner Associate Professor of Economics



Contents

Difference-in-Differences Models

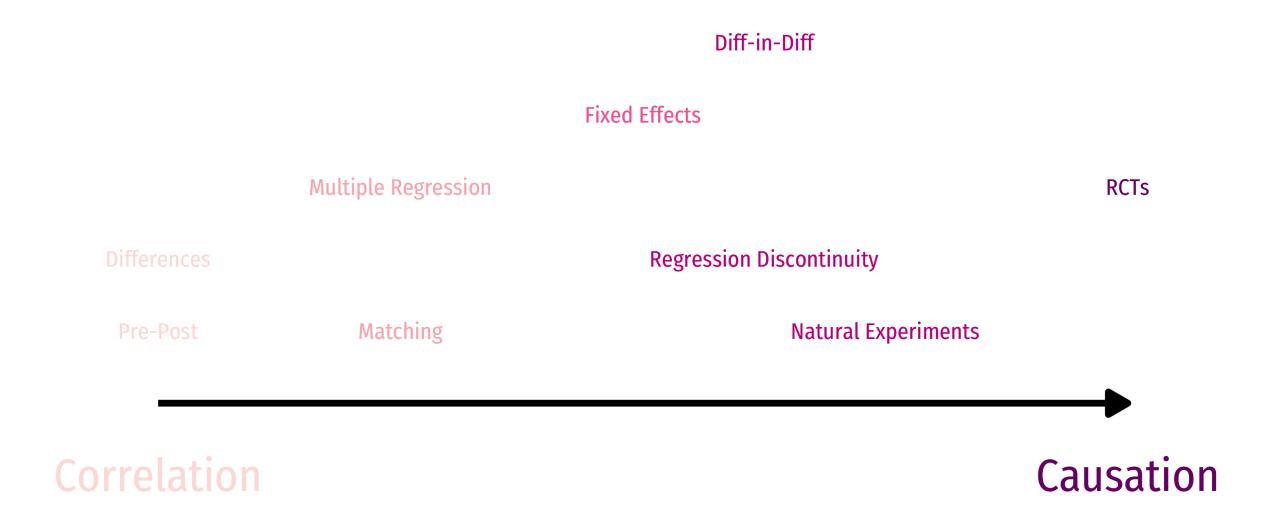
Example I: HOPE in Georgia

Generalizing DND Models

Example II: "The" Card-Kreuger Minimum Wage Study

Clever Research Designs Identify Causality

Again, this toolkit of research designs to identify causal effects is the economist's comparative advantage that firms and governments want!



Natural Experiments

 Often, we want to examine the consequences of a change, such as a law or policy intervention

 Often, we want to examine the consequences of a change, such as a law or policy intervention

Example

- ullet How do States that implement policy X see changes in Y
 - **Treatment**: States that implement *X*
 - **Control**: States that did not implement *X*
- If we have panel data with observations for all states before and after the change...
- Find the *difference* between treatment & control groups *in* their *differences* before and after the treatment period

 Often, we want to examine the consequences of a change, such as a law or policy intervention

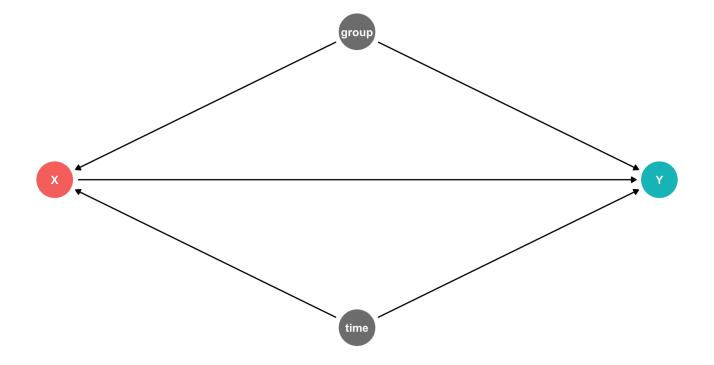
Example

- ullet How do States that implement policy X see changes in Y
 - **Treatment**: States that implement *X*
 - **Control**: States that did not implement *X*
- If we have **panel data** with observations for all states **before** and **after** the change...
- Find the *difference* between treatment & control groups *in* their *differences* before and after the treatment period

 Often, we want to examine the consequences of a change, such as a law or policy intervention

Example

- ullet How do States that implement policy X see changes in Y
 - **Treatment**: States that implement *X*
 - **Control**: States that did not implement *X*
- If we have panel data with observations for all states before and after the change...
- Find the *difference* between treatment & control groups *in* their *differences* before and after the treatment period



• The difference-in-differences (aka "diff-in-diff" or "DND") estimator identifies treatment effect by differencing the difference pre- and post-treatment values of Y between treatment and control groups

$$\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$$

• Treated_i =
$$\begin{cases} 1 \text{ if } i \text{ is in treatment group} \\ 0 \text{ if } i \text{ is not in treatment group} \end{cases}$$
 After_t =
$$\begin{cases} 1 \text{ if } t \text{ is after treatment period} \\ 0 \text{ if } t \text{ is before treatment period} \end{cases}$$

 (ΔY_t)

$$After_t = \begin{cases} 1 & \text{if } t \text{ is after treatment period} \\ 0 & \text{if } t \text{ is before treatment period} \end{cases}$$

	Control	Treatment	Group Diff (ΔY_i)
Before	eta_0	$\beta_0 + \beta_1$	eta_1
After	$\beta_0 + \beta_2$	$\beta_0 + \beta_1 + \beta_2 + \beta_3$	$\beta_1 + \beta_3$
Time Diff	eta_2	$\beta_2 + \beta_3$	eta_3 Diff-in-diff $(\Delta_i \Delta_t)$

Example: Hot Dogs

• Is there a discount when you get cheese and chili?

price <dbl></dbl>	cheese <dbl></dbl>		
2.00	0		
2.35	1		
2.35	0		
2.70	1		
4 rows 1-2 of 3 columns			

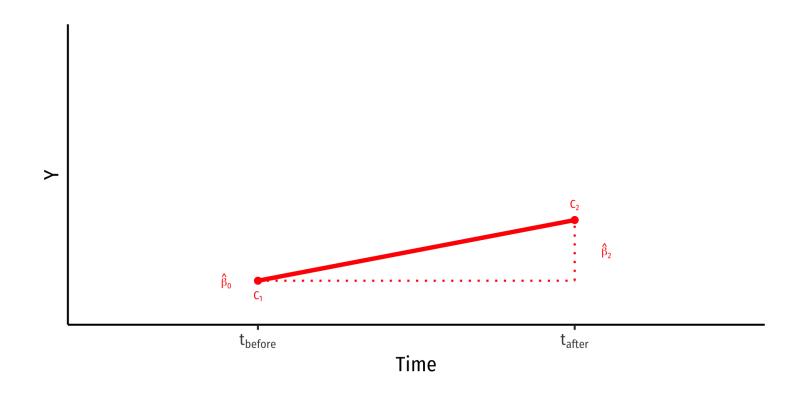
Example: Hot Dogs

• Is there a discount when you get cheese and chili?

```
lm(price ~ cheese + chili + cheese*chili,
      data = hotdogs) %>%
     tidy()
 term
 <chr>
 (Intercept)
 cheese
 chili
 cheese:chili
4 rows | 1-1 of 2 columns
```

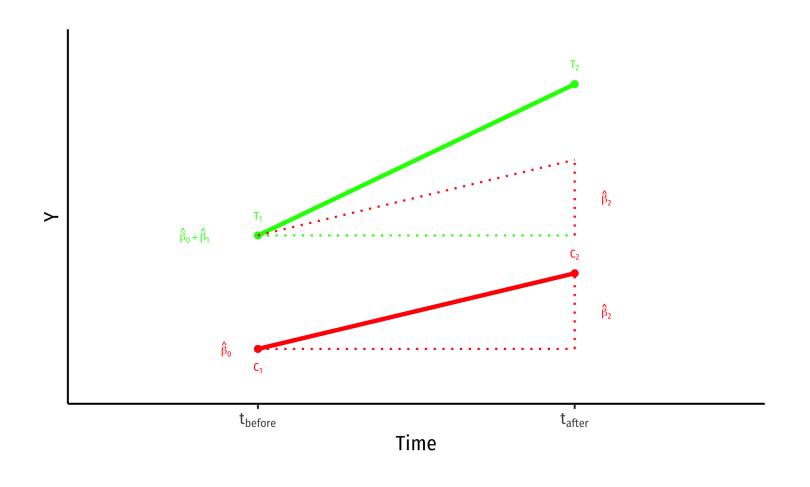
• Diff-n-diff is just a model with an interaction term between two dummies!

$$\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$$



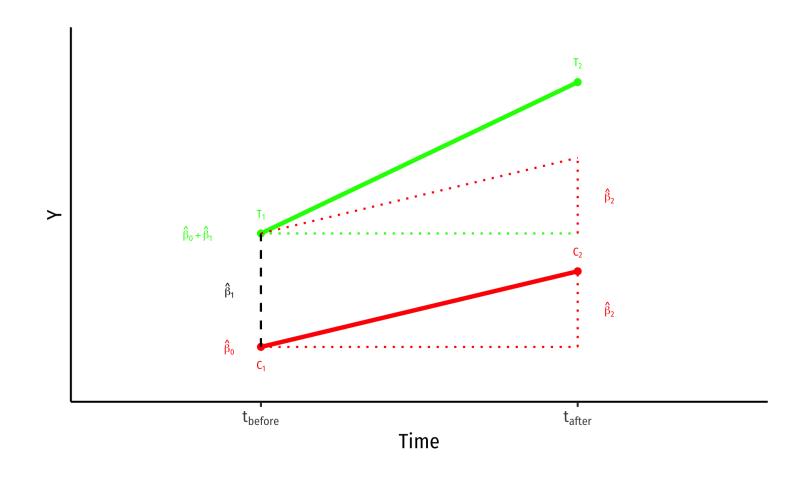
- Control group (Treated_i = 0)
- β_0 : value of Y for **control** group **before** treatment
- $\hat{\beta}_2$: time difference (for **control** group)

$$\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$$



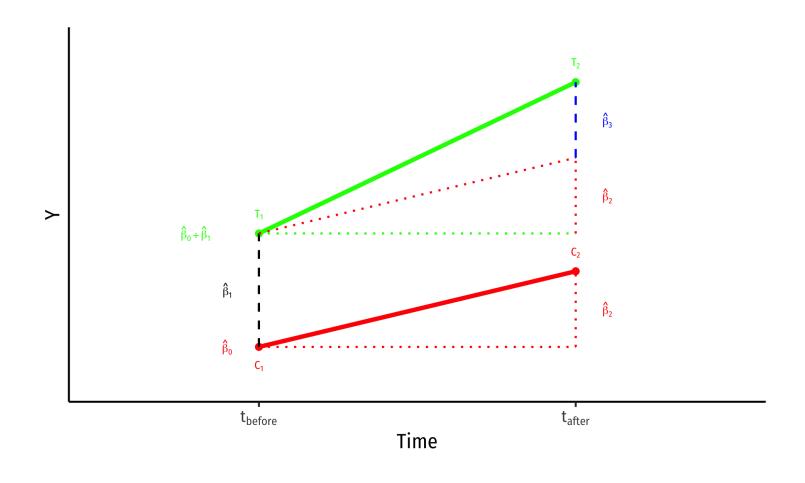
- Control group (Treated_i = 0)
- $\hat{\beta_0}$: value of Y for **control** group **before** treatment
- $\hat{\beta}_2$: time difference (for **control** group)
- Treatment group (Treated $_i = 1$)

$$\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$$



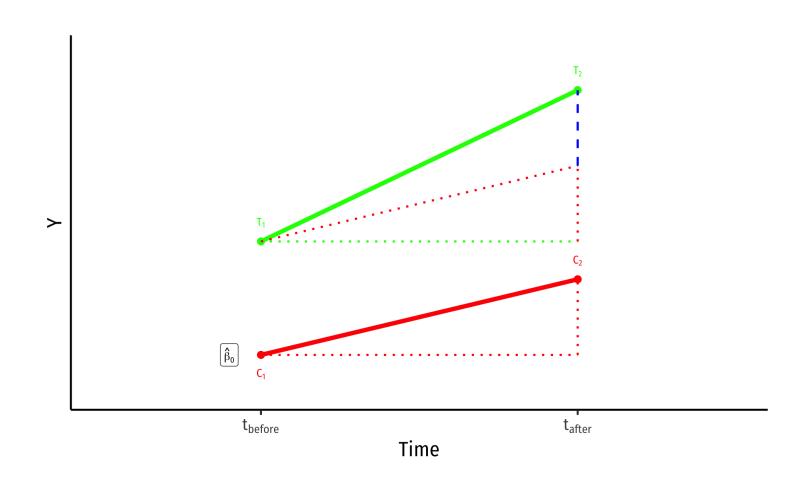
- Control group (Treated_i = 0)
- β_0 : value of Y for **control** group **before** treatment
- $\hat{\beta}_2$: time difference (for **control** group)
- Treatment group (Treated $_i = 1$)
- $\hat{\beta_1}$: difference between groups **before** treatment

$$\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$$



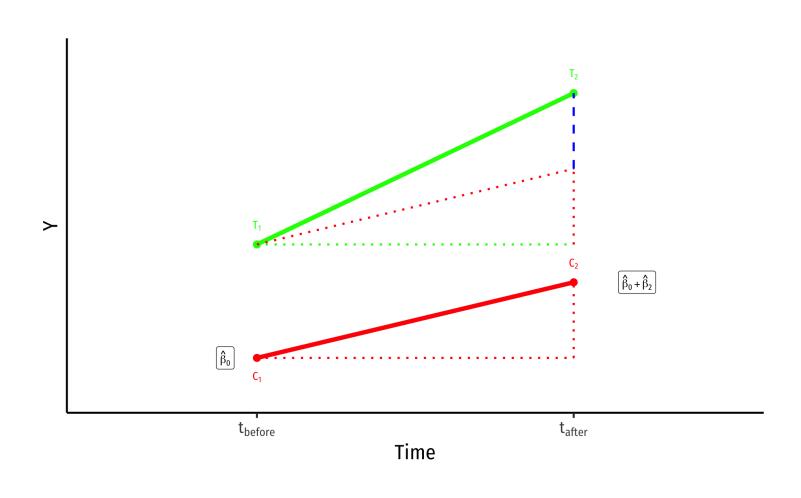
- Control group (Treated_i = 0)
- β_0 : value of Y for **control** group **before** treatment
- $\hat{\beta}_2$: time difference (for **control** group)
- Treatment group (Treated $_i = 1$)
- $\hat{\beta_1}$: difference between groups **before** treatment
- $\hat{\beta}_3$: difference-in-differences (treatment effect)

$$\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$$



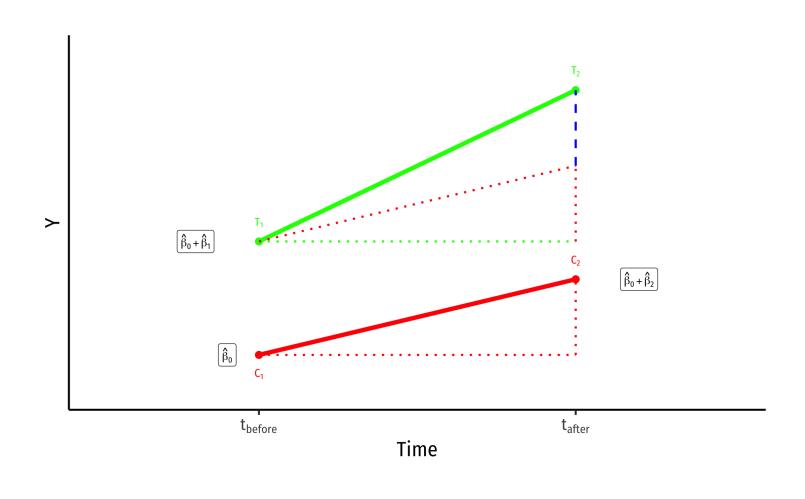
• $ar{Y}_i$ for **Control** group **before**: \hat{eta}_0

$$\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$$



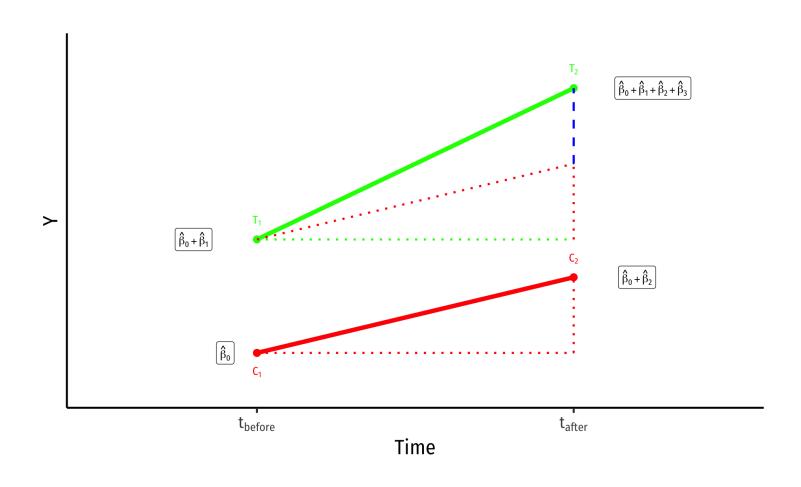
- $ar{Y}_i$ for **Control** group **before**: \hat{eta}_0
- \bar{Y}_i for **Control** group **after**: $\hat{\beta}_0$ + $\hat{\beta}_2$

$$\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$$



- $ar{Y}_i$ for **Control** group **before**: \hat{eta}_0
- \bar{Y}_i for **Control** group **after**: $\hat{\beta}_0$ + $\hat{\beta}_2$
- \bar{Y}_i for **Treatment** group **before**: $\hat{\beta}_0$ + $\hat{\beta}_1$

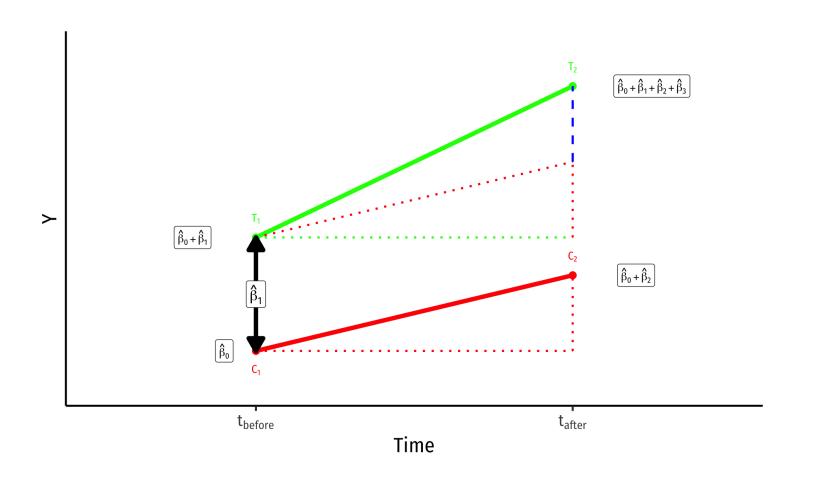
$$\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$$



- $ar{Y}_i$ for **Control** group **before**: \hat{eta}_0
- \bar{Y}_i for **Control** group **after**: $\hat{\beta}_0$ + $\hat{\beta}_2$
- \bar{Y}_i for **Treatment** group **before**: $\hat{\beta}_0$ + $\hat{\beta}_1$
- \bar{Y}_i for **Treatment** group **after**:

$$\hat{\beta_0}$$
 + $\hat{\beta_1}$ + $\hat{\beta_2}$ + $\hat{\beta_3}$

$$\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$$

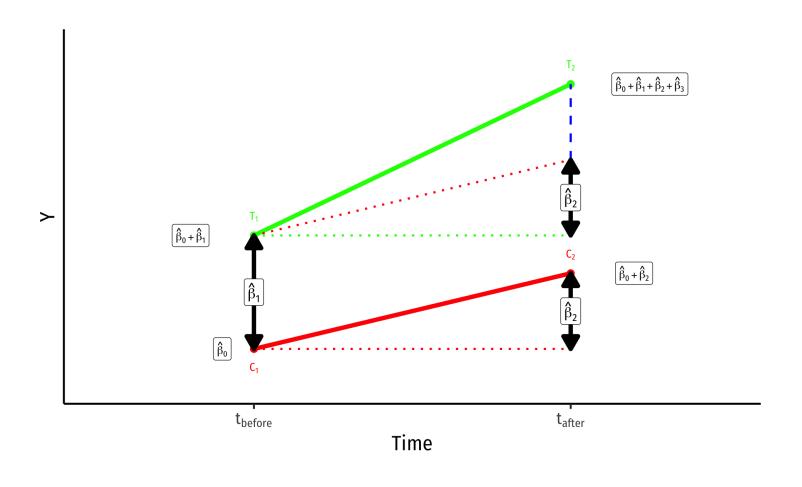


- $ar{Y}_i$ for **Control** group **before**: \hat{eta}_0
- \bar{Y}_i for **Control** group **after**: $\hat{\beta}_0$ + $\hat{\beta}_2$
- \bar{Y}_i for **Treatment** group **before**: $\hat{\beta}_0 + \hat{\beta}_1$
- \bar{Y}_i for **Treatment** group **after**:

$$\hat{\beta}_{0}$$
 + $\hat{\beta}_{1}$ + $\hat{\beta}_{2}$ + $\hat{\beta}_{3}$

• Group Difference (before): $\hat{\beta}_1$

$$\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$$

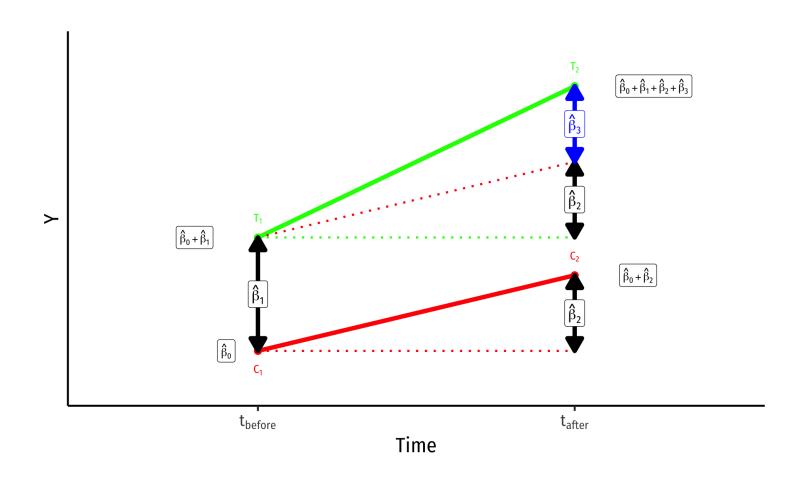


- $ar{Y}_i$ for **Control** group **before**: \hat{eta}_0
- \bar{Y}_i for **Control** group **after**: $\hat{\beta}_0$ + $\hat{\beta}_2$
- \bar{Y}_i for **Treatment** group **before**: $\hat{\beta}_0 + \hat{\beta}_1$
- \bar{Y}_i for **Treatment** group **after**:

$$\hat{\beta}_{0}$$
 + $\hat{\beta}_{1}$ + $\hat{\beta}_{2}$ + $\hat{\beta}_{3}$

- Group Difference (before): $\hat{\beta}_1$
- Time Difference: $\hat{\beta}_2$

$$\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$$



- $ar{Y}_i$ for **Control** group **before**: \hat{eta}_0
- \bar{Y}_i for **Control** group **after**: $\hat{\beta}_0$ + $\hat{\beta}_2$
- \bar{Y}_i for **Treatment** group **before**: $\hat{\beta}_0 + \hat{\beta}_1$
- \bar{Y}_i for **Treatment** group **after**:

$$\hat{\beta}_{0}$$
 + $\hat{\beta}_{1}$ + $\hat{\beta}_{2}$ + $\hat{\beta}_{3}$

- Group Difference (before): $\hat{\beta}_1$
- Time Difference: $\hat{\beta}_2$
- **Difference-in-differences**: $\hat{\beta}_3$ (treatment effect)

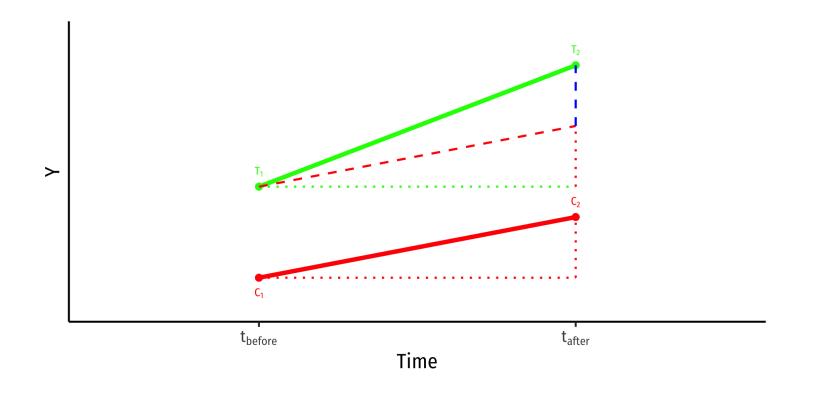
Comparing Group Means (Again)

$$\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$$

	Control	Treatment	Group Diff (ΔY_i)
Before	eta_0	$\beta_0 + \beta_1$	$oldsymbol{eta}_1$
After	$\beta_0 + \beta_2$	$\beta_0 + \beta_1 + \beta_2 + \beta_3$	$\beta_1 + \beta_3$
Time Diff (ΔY_t)	eta_2	$\beta_2 + \beta_3$	Diff-in-diff $\Delta_i \Delta_t : eta_3$

Key Assumption: Counterfactual

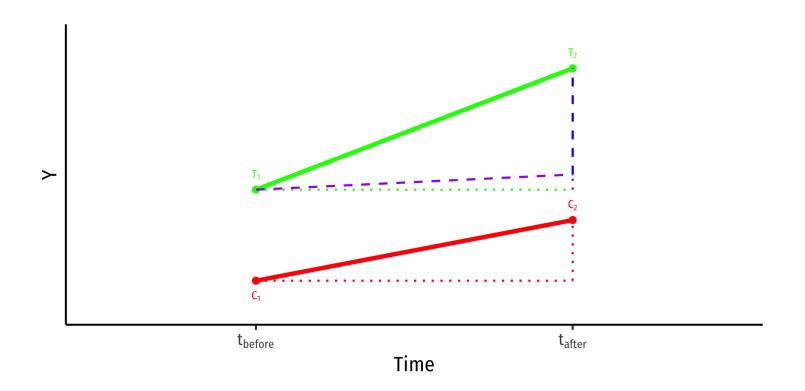
$$\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$$



- Key assumption for DND: **time trends** (for treatment and control) are **parallel**
- Treatment and control groups assumed to be identical over time on average, except for treatment
- Counterfactual: if the treatment group had not recieved treatment, it would have changed identically over time as the control group $(\hat{\beta}_2)$

Key Assumption: Counterfactual

$$\hat{Y}_{it} = \beta_0 + \beta_1 \operatorname{Treated}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Treated}_i \times \operatorname{After}_t) + u_{it}$$



• If the time-trends would have been *different*, a **biased** measure of the treatment effect $(\hat{\beta}_3)!$

Example 1: HOPE in Georgia

Diff-in-Diff Example I

\bigcirc

Example

In 1993 Georgia initiated a HOPE scholarship program to let state residents with at least a B average in high school attend public college in Georgia for free. Did it increase college enrollment?

• Micro-level data on 4,291 young individuals

• InCollege_{it} =
$$\begin{cases} 1 \text{ if } i \text{ is in college during year } t \\ 0 \text{ if } i \text{ is not in college during year } t \end{cases}$$

• Georgia
$$_i = \begin{cases} 1 \text{ if } i \text{ is a Georgia resident} \\ 0 \text{ if } i \text{ is not a Georgia resident} \end{cases}$$

• After_t =
$$\begin{cases} 1 \text{ if } t \text{ is after } 1992 \\ 0 \text{ if } t \text{ is after } 1992 \end{cases}$$

Diff-in-Diff Example II

- We can use a DND model to measure the effect of HOPE scholarship on enrollments
- Georgia and nearby States, if not for HOPE, changes should be the same over time
- Treatment period: after 1992
- Treatment: Georgia
- Difference-in-differences:

$$\Delta_i \Delta_t Enrolled = (GA_{after} - GA_{before}) - (neighbors_{after} - neighbors_{before})$$

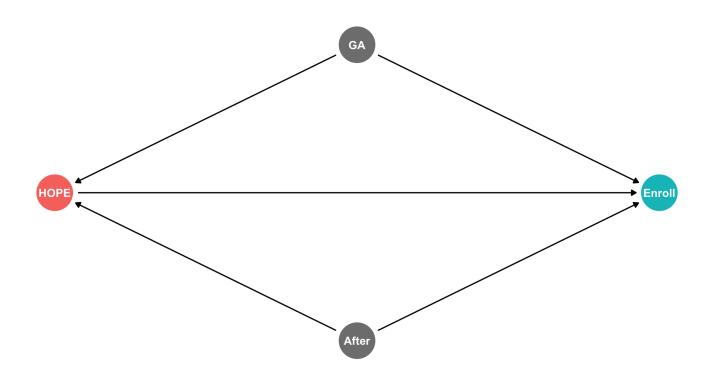
• Regression equation:

$$\widehat{\text{Enrolled}}_{it} = \beta_0 + \beta_1 \operatorname{Georgia}_i + \beta_2 \operatorname{After}_t + \beta_3 (\operatorname{Georgia}_i \times \operatorname{After}_t)$$

Example: Data

1 hope			
StateCode	Age	Year	Weight <dbl></dbl>
<fct></fct>	<dbl></dbl>		<dbl></dbl>
56	19	89	1396
56	19	89	1080
56	18	89	924
56	19	89	891
56	19	89	1395
56	18	89	1106
56	19	89	965
56	18	89	958
56	19	89	1006
56	ECON 480 1-9 cor	non@tocs	1183

Example: Data



The effect of HOPE is identified by differences between Georgia and the rest of the southeastern United States in the time pattern of college attendance rates. I use difference—in—differences estimation, comparing attendance rates before and after HOPE was introduced, within Georgia and in the rest of the region. This calculation can be made using ordinary least squares:

[7]
$$y_i = \alpha_1 + \beta_1 (Georgia_i * After_i)$$

 $+ \delta_1 Georgia_i + \theta_1 After_i + v_{i1}$

where the dependent variable is a binary measure of college attendance, *Georgia*; is a binary variable that is set to one if a youth is a Georgia resident and *After*; is a

Example: Regression

```
DND reg <- lm(InCollege ~ Georgia + After + Georgia*After, data = hope)
 2 DND reg %>% tidy()
                                                                                       estimate
 term
                                                                                           <dbl>
 <chr>
 (Intercept)
                                                                                    0.405782652
 Georgia
                                                                                   -0.105236204
 After
                                                                                   -0.004459609
 Georgia:After
                                                                                    0.089329828
4 rows | 1-2 of 5 columns
```

$$\widehat{\text{Enrolled}}_{it} = 0.406 - 0.105 \, \text{Georgia}_i - 0.004 \, \text{After}_t + 0.089 \, (\text{Georgia}_i \times \text{After}_t)$$

Example: Interpretting the Regression

$$\widehat{\text{Enrolled}}_{it} = 0.406 - 0.105 \, \text{Georgia}_i - 0.004 \, \text{After}_t + 0.089 \, (\text{Georgia}_i \times \text{After}_t)$$

- β_0 : A **non-Georgian before** 1992 was 40.6% likely to be a college student
- β_1 : **Georgians before** 1992 were 10.5% less likely to be college students than neighboring states
- β_2 : After 1992, non-Georgians are 0.4% less likely to be college students
- β_3 : After 1992, Georgians are 8.9% more likely to enroll in colleges than neighboring states
- Treatment effect: HOPE increased enrollment likelihood by 8.9%

Example: Comparing Group Means

$$\widehat{\text{Enrolled}}_{it} = 0.406 - 0.105 \, \text{Georgia}_i - 0.004 \, \text{After}_t + 0.089 \, (\text{Georgia}_i \times \text{After}_t)$$

- A group mean for a dummy Y is $\mathbb{E}[Y=1]$, i.e. the probability a student is enrolled:
- Non-Georgian enrollment probability pre-1992: $\beta_0 = 0.406$
- Georgian enrollment probability pre-1992: $\beta_0 + \beta_1 = 0.406 0.105 = 0.301$
- Non-Georgian enrollment probability post-1992: $\beta_0 + \beta_2 = 0.406 0.004 = 0.402$
- Georgian enrollment probability post-1992:

$$\beta_0 + \beta_1 + \beta_2 + \beta_3 = 0.406 - 0.105 - 0.004 + 0.089 = 0.386$$

Example: Comparing Group Means in R

prob

<dbl>

0.4057827

1 row

prob

<dbl>

0.401323

1 row

Example: Comparing Group Means in R

dbl>

0.3005464

1 row

prob

<dbl>

0.3854167

1 row

Example: Diff-in-Diff Summary

 $\widehat{\text{Enrolled}}_{it} = 0.406 - 0.105 \, \text{Georgia}_i - 0.004 \, \text{After}_t + 0.089 \, (\text{Georgia}_i \times \text{After}_t)$

	Neighbors	Georgia	Group Diff (ΔY_i)
Before	0.406	0.301	-0.105
After	0.402	0.386	0.016
Time Diff (ΔY_t)	-0.004	0.085	Diff-in-diff: 0.089

$$\Delta_i \Delta_t Enrolled = (GA_{after} - GA_{before}) - (neighbors_{after} - neighbors_{before})$$

$$= (0.386 - 0.301) - (0.402 - 0.406)$$

$$= (0.085) - (-0.004)$$

$$= 0.089$$

Diff-in-Diff Summary & Data

TABLE 2
DIFFERENCE-IN-DIFFERENCES
SHARE OF 18–19–YEAR-OLDS ATTENDING COLLEGE
OCTOBER CPS, 1989–97

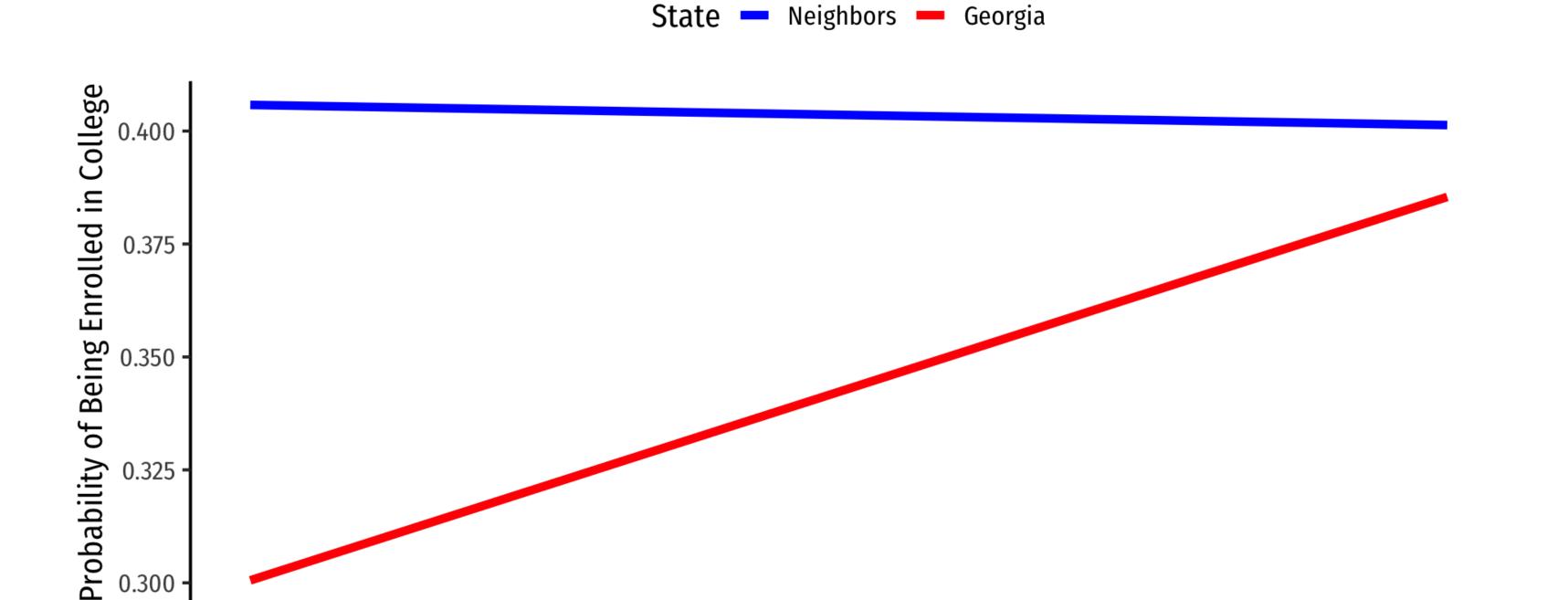
	Before 1993	1993 and After	Difference
Georgia	0.300	0.378	0.078
Rest of Southeastern States	0.415	0.414	-0.001
Difference	0.115	0.036	0.079

Note: Means are weighted by CPS sample weights. The Southeastern states are defined in the note to Table 1.

Dynarski, Susan, 1999, "Hope for Whom? Financial Aid for the Middle Class and its Impact on College Attendance," National Tax Journal 53(3): 629-661

Example: Diff-in-Diff Graph

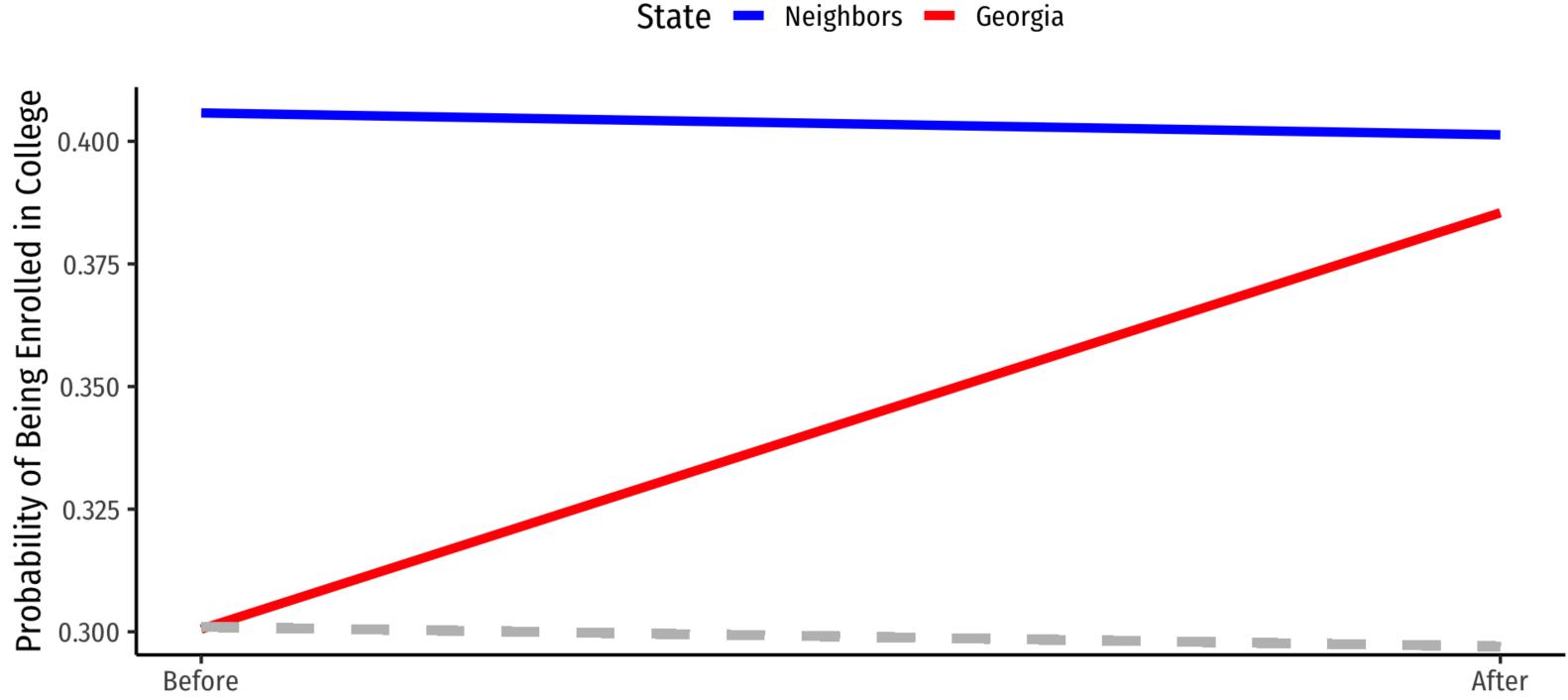
Before



Before or After HOPE

After

Example: Diff-in-Diff Graph



Generalizing DND Models

Generalizing DND Models

DND can be generalized with a two-way fixed effects model:

$$\hat{Y}_{it} = \beta_1 \text{ (Treated}_i \times \text{After}_t) + \alpha_i + \theta_t + \nu_{it}$$

- α_i : group fixed effects (treatments/control groups)
- θ_t : time fixed effects (pre/post treatment)
- β_1 : diff-in-diff (interaction effect, β_3 from before)
- Flexibility: many periods (not just before/after), many different treatment(s)/groups, and treatment(s) can occur at different times to different units (so long as some do not get treated)
- Can also add control variables that vary within units and over time

$$\hat{Y}_{it} = \beta_1 \text{ (Treated}_i \times \text{After}_t) + \beta_2 X_{it} + \dots + \alpha_i + \theta_t + \nu_{it}$$

Our Example, Generalized I

$$\widehat{\text{Enrolled}}_{it} = \beta_1 \left(\text{Georgia}_i \times \text{After}_t \right) + \alpha_i + \theta_t +$$

- StateCode is a variable for the State \implies create State fixed effect (α_i)
- Year is a variable for the year \implies create year fixed effect (θ_t)

Our Example, Generalized II

Using LSDV method:

```
1 DND fe <- lm(InCollege ~ Georgia*After + factor(StateCode) + factor(Year),
             data = hope)
 3 DND fe %>% tidy()
                                                                                           estimate
                                                                                                                             std.error
term
 <chr>
                                                                                              <dbl>
                                                                                                                                 <dbl>
 (Intercept)
                                                                                        0.418057478
                                                                                                                            0.02261133
 Georgia
                                                                                        -0.141501255
                                                                                                                            0.03936119
After
                                                                                        0.075340594
                                                                                                                            0.03128021
factor(StateCode)57
                                                                                        -0.014181112
                                                                                                                            0.02739708
factor(StateCode)58
                                                                                                 NA
                                                                                                                                    NA
factor(StateCode)59
                                                                                       -0.062378540
                                                                                                                            0.01954266
factor(StateCode)62
                                                                                        -0.132650271
                                                                                                                            0.02806143
factor(StateCode)63
                                                                                       -0.005103868
                                                                                                                            0.02627780
factor(Year)90
                                                                                       0.046608845
                                                                                                                            0.02833625
factor(Year)91
                                                                                        0.032275789
                                                                                                                            0.02856877
1-10 of 17 rows | 1-3 of 5 columns
                                                                                                                       Previous 1 2 Next
```


Our Example, Generalized II

Using fixest

```
1 library(fixest)
 2 DND fe 2 <- feols(InCollege ~ Georgia*After | factor(StateCode) + factor(Year),</pre>
              data = hope)
 4 DND_fe_2 %>% tidy()
                                                                estimate
                                                                                                                                       statistic
                                                                                                       std.error
 term
                                                                    <dbl>
                                                                                                          <dbl>
                                                                                                                                          <dbl>
 <chr>
 Georgia:After
                                                                0.0914202
                                                                                                   0.005643298
                                                                                                                                        16.19978
1 row | 1-4 of 5 columns
```

$$\widehat{\text{InCollege}}_{it} = 0.091 (\widehat{\text{Georgia}}_i \times \text{After}_{it}) + \alpha_i + \theta_t$$

Our Example, Generalized, with Controls II

Using LSDV Method

```
1 DND fe controls <- lm(InCollege ~ Georgia*After + factor(StateCode) + factor(Year) + Black + LowIncome,
             data = hope)
 3 DND fe controls %>% tidy()
                                                                                           estimate
                                                                                                                              std.error
term
 <chr>
                                                                                               <dbl>
                                                                                                                                  <dbl>
 (Intercept)
                                                                                         0.735574222
                                                                                                                            0.02990710
 Georgia
                                                                                        -0.108940276
                                                                                                                             0.04765262
After
                                                                                        -0.005753553
                                                                                                                             0.03737027
factor(StateCode)57
                                                                                       -0.043406073
                                                                                                                            0.03047696
factor(StateCode)58
                                                                                                  NA
                                                                                                                                     NA
factor(StateCode)59
                                                                                        -0.053175645
                                                                                                                            0.02306160
factor(StateCode)62
                                                                                        -0.116104615
                                                                                                                            0.03283310
factor(StateCode)63
                                                                                        0.007389866
                                                                                                                            0.03056444
factor(Year)90
                                                                                        0.039364315
                                                                                                                             0.03326291
factor(Year)91
                                                                                                                            0.03347850
                                                                                        0.029227969
1-10 of 19 rows | 1-3 of 5 columns
                                                                                                                        Previous 1 2 Next
```


Our Example, Generalized, with Controls II

Using fixest

```
1 DND fe controls 2 <- feols(InCollege ~ Georgia*After + Black + LowIncome | factor(StateCode) + factor(Year),
              data = hope)
 3 DND fe controls 2 %>% tidy()
                                                                                        estimate
                                                                                                                                  std.error
 term
                                                                                            <dbl>
 <chr>
                                                                                                                                      <dbl>
 Black
                                                                                     -0.09398715
                                                                                                                                 0.01273233
 LowIncome
                                                                                     -0.30172426
                                                                                                                                0.03066188
 Georgia:After
                                                                                      0.02343679
                                                                                                                                0.01281838
3 rows | 1-3 of 5 columns
```

$$\widehat{\text{InCollege}}_{it} = 0.023 \, (\text{Georgia}_i \times \text{After}_{it}) - 0.094 \, \text{Black}_{it} - 0.302 \, \text{LowIncome}_{it}$$

Our Example, Generalized, with Controls III

	No FE	TWFE	TWFE
Constant	0.40578***		
	(0.01092)		
Georgia	-0.10524***		
	(0.03778)		
After	-0.00446		
	(0.01585)		
Georgia x After	0.08933*	0.09142***	0.02344
	(0.04889)	(0.00564)	(0.01282)
Black			-0.09399***
			(0.01273)
LowIncome			-0.30172***
			(0.03066)
n	4291	4291	2967
Adj. R ²	0.00		
SER	0.49	0.49	0.47
* p < 0.1, ** p < 0.0	05, *** p < 0.0°	1	

The Findings

TABLE 3
COLLEGE ATTENDANCE OF 18–19–YEAR–OLDS
OCTOBER CPS, 1989–97
CONTROL GROUP: SOUTHEASTERN STATES

	/1)	(2)	(2)
	(1) Difference-in-	(2) Add	(3) Add Local Economic
	Differences	Covariates	Conditions Controls
After*Georgia	0.079	0.075	0.070
	(0.029)	(0.030)	(0.030)
Georgia	-0.115	-0.100	-0.097
	(0.023)	(0.019)	(0.018)
After	-0.001		
	(0.018)		
Age 18		-0.042	-0.042
rige 10		(0.014)	(0.016)
Matua Basidant		0.042	0.042
Metro Resident		0.042 (0.016)	0.042 (0.015)
		, ,	, ,
Black		-0.134	-0.133
		(0.014)	(0.015)
State Unemployment Rate			0.005
			(0.007)
Year Dummies		Yes	Yes
R ²	0.003	0.023	0.023
N	6,811	6,811	6,811

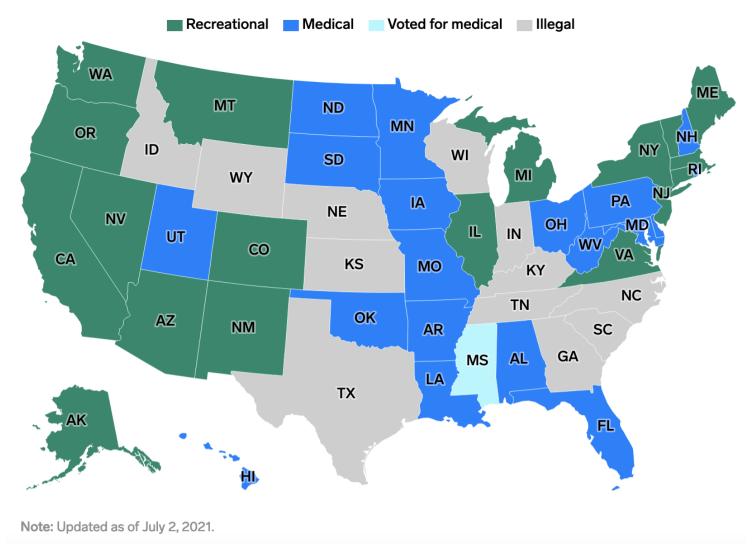
Note: Regressions are weighted by CPS sample weights. Standard errors are adjusted for heteroskedasticity and correlation within state—year cells. The Southeastern states are defined in the note to Table 1.

Dynarski, Susan, 1999, "Hope for Whom? Financial Aid for the Middle Class and its Impact on College Attendance," National Tax Journal 53(3): 629-661

Intuition behind DND

- Diff-in-diff models are the quintessential example of exploiting natural experiments
- A major change at a point in time (change in law, a natural disaster, political crisis) separates groups where one is affected and another is not—identifies the effect of the change (treatment)
- One of the cleanest and clearest causal identification strategies

States where cannabis is legal



Example II: "The" Card-Kreuger Minimum Wage Study

Example: "The" Card-Kreuger Minimum Wage Study I

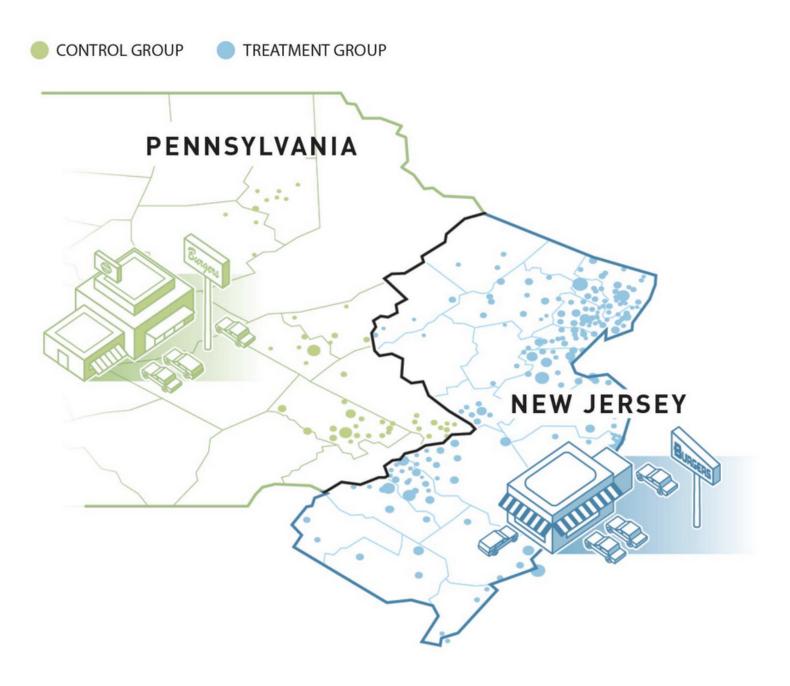
Example

The controversial minimum wage study, Card & Kreuger (1994) is a quintessential (and clever) diff-in-diff.]

Card, David, Krueger, Alan B, (1994), "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania," American Economic Review 84 (4): 772–793

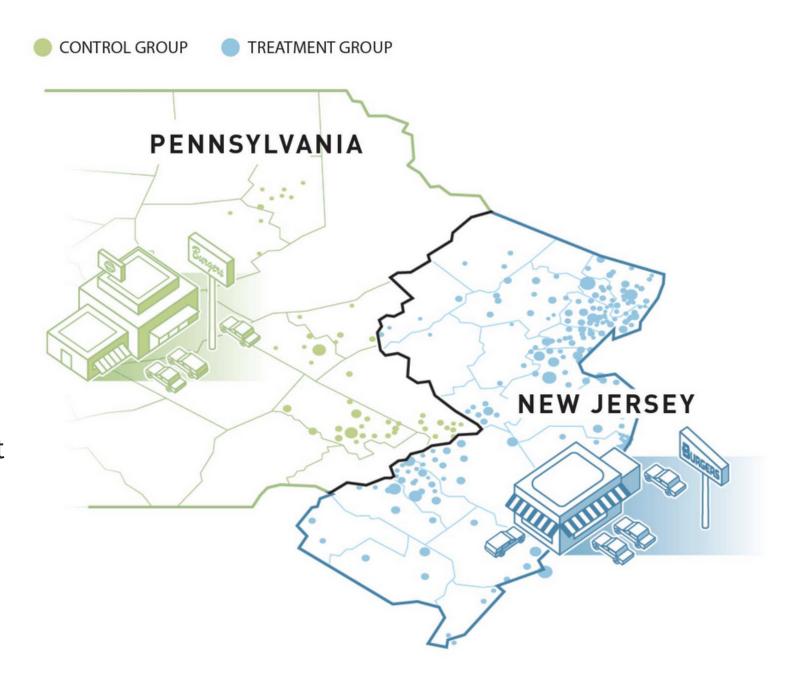
Card & Kreuger (1994): Background I

- Card & Kreuger (1994) compare employment in fast food restaurants on New Jersey and Pennsylvania sides of border between February and November 1992.
- Pennsylvania & New Jersey both had a minimum wage of \$4.25 before February 1992
- In February 1992, New Jersey raised minimum wage from \$4.25 to \$5.05

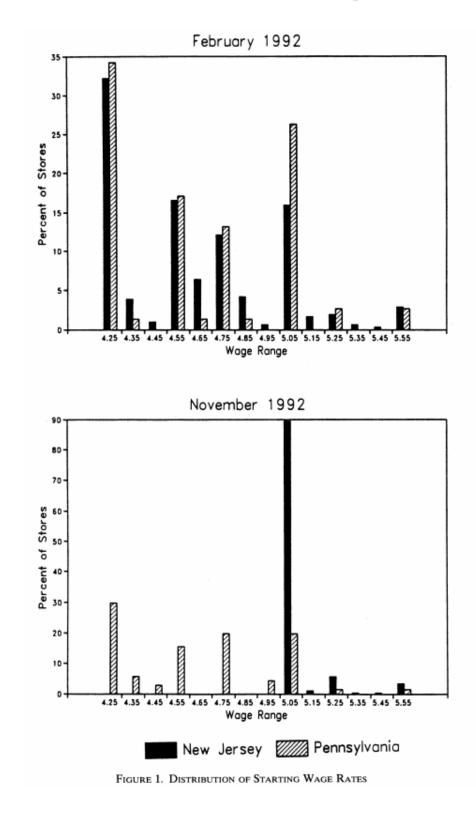


Card & Kreuger (1994): Background II

- If we look only at New Jersey before & after change:
 - **Omitted variable bias**: macroeconomic variables (there's a recession!), weather, etc.
 - Including PA as a control will control for these time-varying effects if they are national trends
- Surveyed 400 fast food restaurants on each side of the border, before & after min wage increase
 - Key assumption: Pennsylvania and New Jersey follow parallel trends,
 - **Counterfactual**: if not for the minimum wage increase, NJ employment would have changed similar to PA employment



Card & Kreuger (1994): Comparisons



Card & Kreuger (1994): Summary I

TABLE 1—SAMPLE DESIGN AND RESPONSE RATES

		Sto	ores in:
	All	NJ	PA
Wave 1, February 15 - March 4, 1992:			
Number of stores in sample frame:a	473	364	109
Number of refusals:	63	33	30
Number interviewed:	410	331	79
Response rate (percentage):	86.7	90.9	72.5
TT			
	410	221	70
Number of stores in sample frame:	410	331	79 1
Number of stores in sample frame: Number closed:	410 6 2	331 5 2	1
Number closed: Number under rennovation:			1 0
Number of stores in sample frame: Number closed:			1

Card & Kreuger (1994): Summary II

TABLE 2—MEANS OF KEY VARIABLES

	Stores in:		
ariable	NJ	PA	
Distribution of Store Types (perc	entages):		
a Burger King	41.1	11.3	
a. Burger King b. KFC	41.1 20.5	44.3 15.2	
b. KFC	20.5	15.2	

Card & Kreuger (1994): Model

$$\widehat{\text{Employment}}_{it} = \beta_0 + \beta_1 \text{ NJ}_i + \beta_2 \text{ After}_t + \beta_3 (\text{NJ}_i \times After_t)$$

- PA Before: β_0
- PA After: $\beta_0 + \beta_2$
- NJ Before: $\beta_0 + \beta_1$
- NJ After: $\beta_0 + \beta_1 + \beta_2 + \beta_3$
- Diff-in-diff: $(NJ_{after} NJ_{before}) (PA_{after} PA_{before})$

	PA	NJ	Group Diff (ΔY_i)
Before	β_0	$\beta_0 + \beta_1$	eta_1
After	$\beta_0 + \beta_2$	$\beta_0 + \beta_1 + \beta_2 + \beta_3$	$\beta_1 + \beta_3$
Time Diff (ΔY_t)	eta_2	$\beta_2 + \beta_3$	Diff-in-diff $\Delta_i \Delta_t : eta_3$

Card & Kreuger (1994): Results

	Stores by state		y state
Variable	PA (i)	NJ (ii)	Difference, NJ – PA (iii)
FTE employment before, all available observations	23.33	20.44	-2.89
	(1.35)	(0.51)	(1.44)
FTE employment after,	21.17	21.03	-0.14 (1.07)
all available observations	(0.94)	(0.52)	
 Change in mean FTE	-2.16	0.59	2.76
employment	(1.25)	(0.54)	(1.36)

